Interfacial "Double-Terminal Binding Sites" Catalysts Synergistically Boosting the Electrocatalytic Li2S Redox for Durable Lithium-Sulfur Batteries

Catalytic conversion of polysulfides emerges as a promising approach to improve the kinetics and mitigate polysulfide shuttling in lithium-sulfur (Li-S) batteries, especially under conditions of high sulfur loading and lean electrolyte. Herein, we present a separator architecture that incorporates double-terminal binding (DTB) sites within a nitrogen-doped carbon framework, consisting of polar Co0.85Se and Co clusters (Co/Co0.85SeNC), to enhance the durability of Li-S batteries. The uniformly dispersed clusters of polar Co0.85Se and Co offer abundant active sites for lithium polysulfides (LiPSs), enabling efficient LiPS conversion while also serving as anchors through a combination of chemical interactions. Density functional theory calculations, along with in situ Raman and X-ray diffraction characterizations, reveal that the DTB effect strengthens the binding energy to polysulfides and lowers the energy barriers of polysulfide redox reactions. Li-S batteries utilizing the Co/Co0.85Se@NC-modified separator demonstrate exceptional cycling stability (0.042% per cycle over 1000 cycles at 2 C) and rate capability (849 mAh g-1 at 3 C), as well as deliver an impressive areal capacity of 10.0 mAh cm-2 even in challenging conditions with a high sulfur loading (10.7 mg cm-2) and lean electrolyte environments (5.8 μL mg-1). The DTB site strategy offers valuable insights into the development of high-performance Li-S batteries.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:18

Enthalten in:

ACS nano - 18(2024), 12 vom: 26. März, Seite 8839-8852

Sprache:

Englisch

Beteiligte Personen:

Xu, Huifang [VerfasserIn]
Jiang, Qingbin [VerfasserIn]
Hui, Kwan San [VerfasserIn]
Wang, Shuo [VerfasserIn]
Liu, Lingwen [VerfasserIn]
Chen, Tianyu [VerfasserIn]
Zheng, Yunshan [VerfasserIn]
Ip, Weng Fai [VerfasserIn]
Dinh, Duc Anh [VerfasserIn]
Zha, Chenyang [VerfasserIn]
Lin, Zhan [VerfasserIn]
Hui, Kwun Nam [VerfasserIn]

Links:

Volltext

Themen:

Binding energy
Double-terminal binding sites
Energy barriers
Journal Article
Separator architecture
Superb electrocatalysis

Anmerkungen:

Date Revised 30.03.2024

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1021/acsnano.3c11903

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369556461