Orientation of graphene nanosheets in suspension under an electric field : theoretical model and molecular dynamic simulations

© 2024 IOP Publishing Ltd..

Orientation regulation of nanoparticles in a suspension by an electric field is a powerful tool to tune its mechanical, thermal, optical, electrical properties etc. However, how molecular modification can affect the orientation of two-dimensional nanoparticles is still unclear. In this paper, the influence of molecular modification on the orientation of graphene nanosheets (GNS) in water was investigated through theoretical analyses and molecular dynamics (MD) simulations. Firstly, a new orientation angle model was proposed, which considers hydration effects, dipole moments and resistance torque. Then, MD simulations were conducted to investigate the effects of position, direction, type, and number of functional groups on the orientation of GNS. The trend observed in MD simulations is consistent with the proposed theoretical model. The results reveal that, under the combined influence of the dipole moment and hydration effects, the modification with hydrophilic functional groups can reduce the orientation angle from 21.31° to 8.34°, while the modification with hydrophobic functional groups increases it to 26.43°. Among the hydrophilic functional groups, orientation of hydroxylated GNS is the best. With an increase in the number of hydroxyl groups, orientation angle is decreased from 12.61° to 8.34°. This work can provide valuable guidance for the design of high-performance suspensions and composites, such as thermal smart materials with adjustable thermal conductivity and intelligent devices with tailored capabilities.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:36

Enthalten in:

Journal of physics. Condensed matter : an Institute of Physics journal - 36(2024), 25 vom: 27. März

Sprache:

Englisch

Beteiligte Personen:

Dong, Yu-Xia [VerfasserIn]
Zhang, Zi-Tong [VerfasserIn]
Zhang, Xu-Dong [VerfasserIn]
Cao, Bing-Yang [VerfasserIn]

Links:

Volltext

Themen:

Graphene nanosheet
Journal Article
Molecular dynamics simulation
Molecular modification
Orientation by electric field
Rotational diffusion coefficient

Anmerkungen:

Date Revised 27.03.2024

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1088/1361-648X/ad31be

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM36947564X