Spatially and Temporally Resolved Dynamic Response of Co-Based Composite Interface during the Oxygen Evolution Reaction

Interfacial interaction dictates the overall catalytic performance and catalytic behavior rules of the composite catalyst. However, understanding of interfacial active sites at the microscopic scale is still limited. Importantly, identifying the dynamic action mechanism of the "real" active site at the interface necessitates nanoscale, high spatial-time-resolved complementary-operando techniques. In this work, a Co3O4 homojunction with a well-defined interface effect is developed as a model system to explore the spatial-correlation dynamic response of the interface toward oxygen evolution reaction. Quasi in situ scanning transmission electron microscopy-electron energy-loss spectroscopy with high spatial resolution visually confirms the size characteristics of the interface effect in the spatial dimension, showing that the activation of active sites originates from strong interfacial electron interactions at a scale of 3 nm. Multiple time-resolved operando spectroscopy techniques explicitly capture dynamic changes in the adsorption behavior for key reaction intermediates. Combined with density functional theory calculations, we reveal that the dynamic adjustment of multiple adsorption configurations of intermediates by highly activated active sites at the interface facilitates the O-O coupling and *OOH deprotonation processes. The dual dynamic regulation mechanism accelerates the kinetics of oxygen evolution and serves as a pivotal factor in promoting the oxygen evolution activity of the composite structure. The resulting composite catalyst (Co-BCo3O4/Co3O4 NSs) exhibits an approximately 70-fold turnover frequency and 20-fold mass activity than the monomer structure (Co3O4 NSs) and leads to significant activity (η10 ∼257 mV). The visual complementary analysis of multimodal operando/in situ techniques provides us with a powerful platform to advance our fundamental understanding of interfacial structure-activity relationships in composite structured catalysts.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:146

Enthalten in:

Journal of the American Chemical Society - 146(2024), 11 vom: 20. März, Seite 7467-7479

Sprache:

Englisch

Beteiligte Personen:

Zhong, Xia [VerfasserIn]
Xu, Jingyao [VerfasserIn]
Chen, Junnan [VerfasserIn]
Wang, Xiyang [VerfasserIn]
Zhu, Qian [VerfasserIn]
Zeng, Hui [VerfasserIn]
Zhang, Yaowen [VerfasserIn]
Pu, Yinghui [VerfasserIn]
Hou, Xiangyan [VerfasserIn]
Wu, Xiaofeng [VerfasserIn]
Niu, Yiming [VerfasserIn]
Zhang, Wei [VerfasserIn]
Wu, Yimin A [VerfasserIn]
Wang, Ying [VerfasserIn]
Zhang, Bingsen [VerfasserIn]
Huang, Keke [VerfasserIn]
Feng, Shouhua [VerfasserIn]

Links:

Volltext

Themen:

Journal Article

Anmerkungen:

Date Revised 20.03.2024

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1021/jacs.3c12820

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369362543