Cerebral asymmetry representation learning-based deep subdomain adaptation network for electroencephalogram-based emotion recognition

© 2024 Institute of Physics and Engineering in Medicine..

Objective.Extracting discriminative spatial information from multiple electrodes is a crucial and challenging problem for electroencephalogram (EEG)-based emotion recognition. Additionally, the domain shift caused by the individual differences degrades the performance of cross-subject EEG classification.Approach.To deal with the above problems, we propose the cerebral asymmetry representation learning-based deep subdomain adaptation network (CARL-DSAN) to enhance cross-subject EEG-based emotion recognition. Specifically, the CARL module is inspired by the neuroscience findings that asymmetrical activations of the left and right brain hemispheres occur during cognitive and affective processes. In the CARL module, we introduce a novel two-step strategy for extracting discriminative features through intra-hemisphere spatial learning and asymmetry representation learning. Moreover, the transformer encoders within the CARL module can emphasize the contributive electrodes and electrode pairs. Subsequently, the DSAN module, known for its superior performance over global domain adaptation, is adopted to mitigate domain shift and further improve the cross-subject performance by aligning relevant subdomains that share the same class samples.Main Results.To validate the effectiveness of the CARL-DSAN, we conduct subject-independent experiments on the DEAP database, achieving accuracies of 68.67% and 67.11% for arousal and valence classification, respectively, and corresponding accuracies of 67.70% and 67.18% on the MAHNOB-HCI database.Significance.The results demonstrate that CARL-DSAN can achieve an outstanding cross-subject performance in both arousal and valence classification.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:45

Enthalten in:

Physiological measurement - 45(2024), 3 vom: 26. März

Sprache:

Englisch

Beteiligte Personen:

Wang, Zhe [VerfasserIn]
Wang, Yongxiong [VerfasserIn]
Wan, Xin [VerfasserIn]
Tang, Yiheng [VerfasserIn]

Links:

Volltext

Themen:

Cerebral asymmetry
Domain adaptation
Electroencephalogram
Emotion recognition
Journal Article

Anmerkungen:

Date Completed 27.03.2024

Date Revised 27.03.2024

published: Electronic

Citation Status MEDLINE

doi:

10.1088/1361-6579/ad2eb6

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369124081