Protein Coronas Derived from Mucus Act as Both Spear and Shield to Regulate Transferrin Functionalized Nanoparticle Transcellular Transport in Enterocytes

The epithelial mucosa is a key biological barrier faced by gastrointestinal, intraoral, intranasal, ocular, and vaginal drug delivery. Ligand-modified nanoparticles demonstrate excellent ability on this process, but their efficacy is diminished by the formation of protein coronas (PCs) when they interact with biological matrices. PCs are broadly implicated in affecting the fate of NPs in vivo and in vitro, yet few studies have investigated PCs formed during interactions of NPs with the epithelial mucosa, especially mucus. In this study, we constructed transferrin modified NPs (Tf-NPs) as a model and explored the mechanisms and effects that epithelial mucosa had on PCs formation and the subsequent impact on the transcellular transport of Tf-NPs. In mucus-secreting cells, Tf-NPs adsorbed more proteins from the mucus layers, which masked, displaced, and dampened the active targeting effects of Tf-NPs, thereby weakening endocytosis and transcellular transport efficiencies. In mucus-free cells, Tf-NPs adsorbed more proteins during intracellular trafficking, which enhanced transcytosis related functions. Inspired by soft coronas and artificial biomimetic membranes, we used mucin as an "active PC" to precoat Tf-NPs (MTf-NPs), which limited the negative impacts of "passive PCs" formed during interface with the epithelial mucosa and improved favorable routes of endocytosis. M@Tf-NPs adsorbed more proteins associated with endoplasmic reticulum-Golgi functions, prompting enhanced intracellular transport and exocytosis. In summary, mucus shielded against the absorption of Tf-NPs, but also could be employed as a spear to break through the epithelial mucosa barrier. These findings offer a theoretical foundation and design platform to enhance the efficiency of oral-administered nanomedicines.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:18

Enthalten in:

ACS nano - 18(2024), 10 vom: 12. März, Seite 7455-7472

Sprache:

Englisch

Beteiligte Personen:

Yang, Dan [VerfasserIn]
Feng, Yuqi [VerfasserIn]
Yuan, Ying [VerfasserIn]
Zhang, Linxuan [VerfasserIn]
Zhou, Yao [VerfasserIn]
Midgley, Adam C [VerfasserIn]
Wang, Yanrong [VerfasserIn]
Liu, Ning [VerfasserIn]
Li, Guoliang [VerfasserIn]
Yao, Xiaolin [VerfasserIn]
Liu, Dechun [VerfasserIn]

Links:

Volltext

Themen:

Journal Article
Mucus
Nanobio interaction
Oral absorption
Protein Corona
Protein corona
Protein-coated nanoparticles
Transferrin
Transferrin-functionalized nanoparticles
Transferrins

Anmerkungen:

Date Completed 13.03.2024

Date Revised 13.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1021/acsnano.3c11315

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369070801