Coexistence of virulent and multidrug-resistant plasmids in an uropathogenic Escherichia coli

Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved..

OBJECTIVES: The emergence of pathogens co-harbouring multiple mobile resistance and virulence elements is of great concern in clinical settings. Herein, we report an O101: H10-ST167 Escherichia coli Hu106 strain isolated from the urinary tract of a female in China.

METHODS: Antibiotic susceptibility testing was used to present the antimicrobial resistance spectrum. Whole-genome sequencing (WGS) and bioinformatic analysis were used to clarify the virulent and resistance mechanisms. Furthermore, the virulence of this strain was tested by the Greater wax moth larvae and siderophore production experiment.

RESULTS: The strain E. coli Hu106 was resistant to almost all antimicrobials tested, and only susceptible to aztreonam, amikacin, and tigecycline. WGS analysis revealed that the strain Hu106 co-harboured blaNDM-9 and mcr-1 on p2-Hu106, belonging to IncHI2/IncHI2A (256,000 bp). The co-existence of both resistance genes, blaNDM-9 and mcr-1, on the plasmid p2-Hu106 was mainly acquired by transposition recombination of mobile antibiotic elements mediated by IS26 and/or IS1 on IncHI2/IncHI2A type plasmid. In addition, the virulence clusters aerobactin (iutA-iucABCD) and salmochelin (iroBCDEN) were identified on an IncFIB/IncFIC(IncFII) type plasmid p1-Hu106, flanked by small mobile elements such as IS1A, ISkpn28, and IS3, respectively. After performing genomic comparison of p1-Hu106 with the WGS in NCBI, we identified that the virulent plasmid p1-Hu106-like could spread in different clones of E. coli and Klebsiella pneumoniae, revealing its underlying dissemination mechanism between Enterobacterales. Furthermore, the strain caused a decreased survival rate of larvae and produced high siderophore units (62.33%), similar to hypervirulent K. pneumoniae NTUH-K2044.

CONCLUSIONS: The strains co-carrying the multidrug-resistant plasmid p2-Hu106 and virulent plasmid p1-Hu106 should be closely monitored to prevent its further spreading.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:37

Enthalten in:

Journal of global antimicrobial resistance - 37(2024) vom: 24. Feb., Seite 4-7

Sprache:

Englisch

Beteiligte Personen:

Wu, Yongli [VerfasserIn]
Li, Ziyao [VerfasserIn]
Lei, Zichen [VerfasserIn]
Zhao, Jiankang [VerfasserIn]
Zhang, Yulin [VerfasserIn]
Liu, Xinmeng [VerfasserIn]
Hu, Yanning [VerfasserIn]
Zhang, Feilong [VerfasserIn]
Lu, Binghuai [VerfasserIn]

Links:

Volltext

Themen:

Bla(NDM-9)
Escherichia coli
Journal Article
Mcr-1
Resistance
Siderophores
Virulence

Anmerkungen:

Date Revised 15.03.2024

published: Print-Electronic

Citation Status Publisher

doi:

10.1016/j.jgar.2024.02.007

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM368985210