Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model

Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved..

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.

Errataetall:

ErratumIn: J Biol Chem. 2024 Apr 4;300(4):107240. - PMID 38579375

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:300

Enthalten in:

The Journal of biological chemistry - 300(2024), 3 vom: 22. März, Seite 105783

Sprache:

Englisch

Beteiligte Personen:

Zhong-Johnson, En Ze Linda [VerfasserIn]
Dong, Ziyue [VerfasserIn]
Canova, Christopher T [VerfasserIn]
Destro, Francesco [VerfasserIn]
Cañellas, Marina [VerfasserIn]
Hoffman, Mikaila C [VerfasserIn]
Maréchal, Jeanne [VerfasserIn]
Johnson, Timothy M [VerfasserIn]
Zheng, Maya [VerfasserIn]
Schlau-Cohen, Gabriela S [VerfasserIn]
Lucas, Maria Fátima [VerfasserIn]
Braatz, Richard D [VerfasserIn]
Sprenger, Kayla G [VerfasserIn]
Voigt, Christopher A [VerfasserIn]
Sinskey, Anthony J [VerfasserIn]

Links:

Volltext

Themen:

Biochemical model
EC 3.-
Hydrolases
IsPETase
Journal Article
Kinetics
PET biodegradation
PETase
Polyethylene Terephthalates
Surface crowding

Anmerkungen:

Date Completed 03.04.2024

Date Revised 10.04.2024

published: Print-Electronic

ErratumIn: J Biol Chem. 2024 Apr 4;300(4):107240. - PMID 38579375

Citation Status MEDLINE

doi:

10.1016/j.jbc.2024.105783

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM368852954