Modulating Th1/Th2 drift in asthma-related immune inflammation by enhancing bone mesenchymal stem cell homing through targeted inhibition of the Notch1/Jagged1 signaling pathway

Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved..

Asthma, a disease intricately linked to immune inflammation, is significantly influenced by the immune regulatory effect of bone mesenchymal stem cells (BMSCs). This study aims to investigate changes in the homing of BMSCs in bronchial asthma, focusing on the Notch homolog (Notch)1/Jagged1 signaling pathway's role in regulating T helper 1(Th1)/T helper 2(Th2) drift. Additionally, we further explore the effects and mechanisms of homologous BMSCs implantation in asthma-related immune inflammation. Following intervention with BMSCs, a significant improvement in the pathology of rats with asthma was observed. Simultaneously, a reduction in the expression of inflammatory cells and inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin(IL)-4, and IL-13 was observed in bronchoalveolar lavage fluid (BALF). Furthermore, there was an increase in the expression of Th1 cytokine Interferon-γ(IFN-γ)and the transcription factor T-box expressed in T cell (T-bet), while the expression of Th2 cytokine IL-13 and transcription factor GATA binding protein (GATA)-3 decreased in lung tissue. This indicates that the Th1/Th2 drift leans towards Th1, which a crucial in ameliorating asthma inflammation. Importantly, inhibition of the Notch1 signaling pathway led to an increased expression of the Stromal cell-derived factor-1(SDF-1)/C-X-C motif chemokine receptor (CXCR)4 chemokine axis. Consequently, the homing ability of bone marrow mesenchymal stem cells to asthma-affected lung tissue was significantly enhanced. BMSCs demonstrated heightened efficacy in regulating the cytokine/chemokine network and Th1/Th2 balance, thereby restoring a stable state during the immune response process in asthma. In conclusion, inhibiting the Notch signaling pathway enhances the expression of the SDF-1 and CXCR4 chemokine axis, facilitating the migration of allogeneic BMSCs to injured lung tissues. This, in turn, promotes immune regulation and improves the Th1/Th2 imbalance, thereby enhancing the therapeutic effect on asthmatic airway inflammation.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:130

Enthalten in:

International immunopharmacology - 130(2024) vom: 30. März, Seite 111713

Sprache:

Englisch

Beteiligte Personen:

Kun, Wang [VerfasserIn]
Xiaomei, Cao [VerfasserIn]
Lei, Yang [VerfasserIn]
Huizhi, Zhu [VerfasserIn]

Links:

Volltext

Themen:

Asthma
Bone mesenchymal stem cells
Chemokines
Cytokines
Homing
Interleukin-13
Journal Article
Notch1/Jagged1 signaling pathway
Notch1 protein, rat
Receptor, Notch1
Th1/Th2 drift
Transcription Factors

Anmerkungen:

Date Completed 25.03.2024

Date Revised 25.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.intimp.2024.111713

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM368771857