Synthetic phenolic compounds perturb lipid metabolism and induce obesogenic effects

Given continuous development in society and the economy, obesity has become a global epidemic, arousing great concern. In addition to genetic and dietary factors, exposure to environmental chemicals is associated with the occurrence and development of obesity. Current research has indicated that some chemicals with endocrine-disrupting effects can affect lipid metabolism in vivo, causing elevated lipid storage. These chemicals are called "environmental obesogens". Synthetic phenolic compounds (SPCs) are widely used in industrial and daily products, such as plastic products, disinfectants, pesticides, food additives, and so on. The exposure routes of SPCs to the human body may include food and water consumption, direct skin contact, etc. Their unintended exposure could cause harmful effects on human health. As a type of endocrine disruptor, SPCs interfere with adipogenesis and lipid metabolism, exhibiting the characteristics of environmental obesogens. Because SPCs have similar phenolic structures, gathering information on their influences on lipid metabolism would be helpful to understand their structure-related effects. In this review, three commonly used research methods for screening environmental obesogens, including in vitro testing for molecular interactions, cell adipogenic differentiation models, and in vivo studies on lipid metabolism, are summarized, and the advantages and disadvantages of these methods are compared and discussed. Based on both in vitro and in vivo data, three types of SPCs, including bisphenol A (BPA) and its analogues, alkylphenols (APs), and synthetic phenolic antioxidants (SPAs), are systematically discussed in terms of their ability to disrupt adipogenesis and lipid metabolism by focusing on adipose and hepatic tissues, among others. Common findings on the effects of these SPCs on adipocyte differentiation, lipid storage, hepatic lipid accumulation, and liver steatosis are described. The underlying toxicological mechanisms are also discussed from the aspects of nuclear receptor transactivation, inflammation and oxidative stress regulation, intestinal microenvironment alteration, epigenetic modification, and some other signaling pathways. Future research to increase public knowledge on the obesogenic effects of emerging chemicals of concern is encouraged.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:42

Enthalten in:

Se pu = Chinese journal of chromatography - 42(2024), 2 vom: 20. Feb., Seite 131-141

Sprache:

Chinesisch

Beteiligte Personen:

Liu, Hui-Nan [VerfasserIn]
Sun, Zhen-Dong [VerfasserIn]
Liu, Qian [VerfasserIn]
Zhou, Qun-Fang [VerfasserIn]
Jiang, Gui-Bin [VerfasserIn]

Links:

Volltext

Themen:

Benzhydryl Compounds
Endocrine Disruptors
English Abstract
Environmental obesogen
Journal Article
Lipid metabolism
Lipids
Obesity
Review
Synthetic phenolic compounds (SPCs)

Anmerkungen:

Date Completed 21.02.2024

Date Revised 22.02.2024

published: Print

Citation Status MEDLINE

doi:

10.3724/SP.J.1123.2023.12018

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM368646491