Assessing the impact of climatic variability on acute respiratory diseases across diverse climatic zones in South Africa

Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved..

Acute respiratory diseases are a significant public health concern in South Africa, with climatic variables such as temperature and rainfall being key influencers. This study investigates the associations between these variables and the prevalence of acute respiratory diseases in Johannesburg, Cape Town, and Gqeberha (Port Elizabeth), representing distinct climatic zones. Spearman's correlation analyses showed negative correlations in Johannesburg for respiratory disease claims with maximum temperature (r = -0.12, p < 0.0001) and mean temperature (r = -0.13, p < 0.0001), and a negative correlation with daily rainfall (r = -0.12, p < 0.0001). Cape Town demonstrated a negative correlation with maximum temperature (r = -0.18, p < 0.0001) and a positive correlation with rainfall (r = 0.08, p < 0.0001). Utilizing Distributed Lag Non-linear Models (DLNM), the study revealed that in Johannesburg, the relative risk (RR) of respiratory claims increases notably at temperatures below 12 °C, and again at a Tmax between 16 and 23 °C. The risk escalates further at >30 °C, although with a considerable error margin. For Cape Town, a stable level of moderate RR is seen from Tmax 15-24 °C, with a significant increase in RR and error margin above 30 °C. In Gqeberha, the DLNM results are less definitive, reflecting the city's moderate climate and year-round rainfall. The RR of acute respiratory diseases did not show clear patterns with temperature changes, with increasing error margins outside the 22 °C threshold. These findings emphasize the imperative for region-specific public health strategies that account for the complex, non-linear influences of climate on respiratory health. This detailed understanding of the climate-health nexus provides a robust basis for enhancing public health interventions and future research directed at reducing the impacts of climate factors.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:918

Enthalten in:

The Science of the total environment - 918(2024) vom: 25. Feb., Seite 170661

Sprache:

Englisch

Beteiligte Personen:

Motlogeloa, Ogone [VerfasserIn]
Fitchett, Jennifer M [VerfasserIn]

Links:

Volltext

Themen:

Climatic variables
Disease incidence
Distributed lag non-linear model
Epidemiology
Journal Article
Meteorological factors
Public health

Anmerkungen:

Date Completed 22.02.2024

Date Revised 22.02.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.scitotenv.2024.170661

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM368312259