Characterization of the molecular composition and in vitro regenerative capacity of platelet-based bioproducts and related subfractions

Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved..

The use and demand of platelet-based bioproducts in regenerative medicine is steadily increasing. However, it is very difficult to establish the real clinical benefits of these therapies, as the lack of characterization and detailed production methods of platelet-based bioproducts persists in the literature and precludes cross-study comparisons. We characterized the molecular composition and in vitro regenerative capacity of platelet-rich plasma (PRP) produced in a closed-system. Furthermore, we performed a parallel characterization on different PRP subfractions (plasma and plasma-free platelet lysate), identifying that the fractions containing platelet-derived cargo exert the most potent regenerative capacity. This observation led us to develop a method to obtain a platelet secretome highly enriched in growth factors, free of plasma and cellular components (PCT/IB2022/057936), with the aim of establishing a superior bioproduct. The molecular characterization of secretomes revealed agonist-dependent differences, which correlates with beneficial grades of regenerative capacity. Importantly, secretomes showed general superiority to PRP in vitro. We discuss the variables influencing the bioproduct quality (inter-donor variation, platelet source and processing methods). Finally, we propose that the characteristics of secretomes circumvents certain limitations of PRP (autologous vs allogeneic), and envision that optimizing post-processing protocols (nanoencapsulation, lyophilization), would allow their clinical application even beyond regenerative medicine. STATEMENT OF SIGNIFICANCE: The use and demand of platelet-based bioproducts in regenerative medicine is steadily increasing. However, it is very difficult to establish the real clinical benefits of these therapies, or to improve/personalize them, as the lack of characterization of the bioproducts and their production methods is a constant in the literature, reason that precludes cross-study comparisons. In the present manuscript, we provide a comprehensive molecular and functional characterization of platelet-based bioproducts and subfractions, including platelet rich plasma, plasma fractions and platelet secretomes produced with a methodology developed by our group. Our results show that the molecular composition of each fraction correlates with its regenerative capacity in vitro. Thus, a rigorous characterization of platelet-derived bioproducts will potentially allow universal use, customizing and new applications.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:177

Enthalten in:

Acta biomaterialia - 177(2024) vom: 15. März, Seite 132-147

Sprache:

Englisch

Beteiligte Personen:

Acebes-Huerta, Andrea [VerfasserIn]
Martínez-Botía, Patricia [VerfasserIn]
Carbajo-Argüelles, Graciela [VerfasserIn]
Fernández-Fuertes, Judit [VerfasserIn]
Muñoz-Turrillas, María Carmen [VerfasserIn]
Ojea-Pérez, Ana María [VerfasserIn]
López-Vázquez, Antonio [VerfasserIn]
Eble, Johannes A [VerfasserIn]
Gutiérrez, Laura [VerfasserIn]

Links:

Volltext

Themen:

Bioactive factors
Growth factors
Intercellular Signaling Peptides and Proteins
Journal Article
Plasma
Platelet rich plasma (PRP)
Platelet secretome
Platelets
Regenerative medicine
Wound healing

Anmerkungen:

Date Completed 20.03.2024

Date Revised 20.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.actbio.2024.01.029

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM368191044