Photochemical loss with consequential underestimation in active VOCs and corresponding secondary pollutions in a petrochemical refinery, China

Copyright © 2024. Published by Elsevier B.V..

The photochemical loss of volatile organic compounds (VOCs) significantly alters the capturing source profiles in high-reactivity VOC species and results in an underestimation of secondary pollutants such as ozone (O3) and secondary organic aerosol (SOA). Utilising speciated VOC data from large petrochemical refineries, the research assesses the photochemical loss of various VOC species. Air samples from multiple sites revealed over 99 VOCs, with initial concentrations estimated via a photochemical age-based parameterisation method. The comparative analysis of initial and measured VOC values provided insights into the VOCs' photochemical degradation during transport. Findings highlight that the average photochemical loss of total VOCs (TVOCs) across different refinery process areas varied between 4.9 and 506.8 ppb, averaging 187.5 ± 128.7 ppb. Alkenes dominated the consumed VOCs at 83.1 %, followed by aromatic hydrocarbons (9.3 %), alkanes (6.1 %), and oxygenated VOCs (OVOCs) at 1.6 %. The average consumption-based ozone formation potential (OFP) and SOA formation potential (SOAP) were calculated at 1767.3 ± 1251.1 ppb and 2959.6 ± 2386.3 ppb, respectively. Alkenes, primarily isoprene, 1,3-butadiene, and acetylene, were the most significant contributors to OFP, ranging from 19.9 % to 95.5 %. Aromatic hydrocarbons, predominantly monocyclic aromatics like toluene, xylene, styrene, and n-dodecane, were the primary contributors to SOAP, accounting for 5.0 % to 81.3 %. This research underscores the significance of considering photochemical losses in VOCs for accurate secondary pollution assessment, particularly in high-reactivity VOC species. It also provides new detection methods and accurate data for the characterization, source analysis and chemical conversion of volatile organic compounds in the petroleum refining industry.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:918

Enthalten in:

The Science of the total environment - 918(2024) vom: 25. Feb., Seite 170613

Sprache:

Englisch

Beteiligte Personen:

Zhang, Lili [VerfasserIn]
Xu, Tong [VerfasserIn]
Wu, Gengchen [VerfasserIn]
Zhang, Chengliang [VerfasserIn]
Li, Yang [VerfasserIn]
Wang, Hao [VerfasserIn]
Gong, Daocheng [VerfasserIn]
Li, Qinqin [VerfasserIn]
Wang, Boguang [VerfasserIn]

Links:

Volltext

Themen:

Journal Article
Petroleum refinery
Photochemical loss modifying
Secondary pollution
Source profiles
Volatile organic compounds (VOCs)

Anmerkungen:

Date Revised 21.02.2024

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1016/j.scitotenv.2024.170613

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM367966689