Selenium-silk microgels as antifungal and antibacterial agents

Antimicrobial resistance is a leading threat to global health. Alternative therapeutics to combat the rise in drug-resistant strains of bacteria and fungi are thus needed, but the development of new classes of small molecule therapeutics has remained challenging. Here, we explore an orthogonal approach and address this issue by synthesising micro-scale, protein colloidal particles that possess potent antimicrobial properties. We describe an approach for forming silk-based microgels that contain selenium nanoparticles embedded within the protein scaffold. We demonstrate that these materials have both antibacterial and antifungal properties while, crucially, also remaining highly biocompatible with mammalian cell lines. By combing the nanoparticles with silk, the protein microgel is able to fulfill two critical functions; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while simultaneously serving as a carrier for microbial eradication. Furthermore, since the antimicrobial activity originates from physical contact, bacteria and fungi are unlikely to develop resistance to our hybrid biomaterials, which remains a critical issue with current antibiotic and antifungal treatments. Therefore, taken together, these results provide the basis for innovative antimicrobial materials that can target drug-resistant microbial infections.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:9

Enthalten in:

Nanoscale horizons - 9(2024), 4 vom: 25. März, Seite 609-619

Sprache:

Englisch

Beteiligte Personen:

Wiita, Elizabeth G [VerfasserIn]
Toprakcioglu, Zenon [VerfasserIn]
Jayaram, Akhila K [VerfasserIn]
Knowles, Tuomas P J [VerfasserIn]

Links:

Volltext

Themen:

Anti-Bacterial Agents
Anti-Infective Agents
Antifungal Agents
H6241UJ22B
Journal Article
Microgels
Selenium
Silk

Anmerkungen:

Date Completed 26.03.2024

Date Revised 27.03.2024

published: Electronic

Citation Status MEDLINE

doi:

10.1039/d3nh00385j

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM367788918