Lateral flow immunoassay based on surface-enhanced Raman scattering using pH-induced phage-templated hierarchical plasmonic assembly for point-of-care diagnosis of infectious disease

Copyright © 2024 Elsevier B.V. All rights reserved..

The outbreak of emerging infectious diseases gave rise to the demand for reliable point-of-care testing methods to diagnose and manage those diseases in early onset. However, the current on-site testing methods including lateral flow immunoassay (LFIA) suffer from the inaccurate diagnostic result due to the low sensitivity. Herein, we present the surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) by introducing phage-templated hierarchical plasmonic assembly (PHPA) nanoprobes to diagnose a contagious disease. The PHPA was fabricated using gold nanoparticles (AuNPs) assembled on bacteriophage MS2, where inter-particle gap sizes can be adjusted by pH-induced morphological alteration of MS2 coat proteins to provide the maximum SERS amplification efficiency via plasmon coupling. The plasmonic probes based on the PHPA produce strong and reproducible SERS signal that leads to sensitive and reliable diagnostic results in SERS-LFIA. The developed SERS-LFIA targeting severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) antibodies for a proof of concept had <100 pg/mL detection limits with high specificity in serum, proving it as an effective diagnostic device for the infectious diseases. Clinical validation using human serum samples further confirmed that the PHPA-based SERS-LFIA can distinguish the patients with COVID-19 from healthy controls with significant accuracy. These outcomes prove that the developed SERS-LFIA biosensor can be an alternative point-of-care testing (POCT) method against the emerging infectious diseases, in combination with the commercially available portable Raman devices.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:250

Enthalten in:

Biosensors & bioelectronics - 250(2024) vom: 15. Feb., Seite 116061

Sprache:

Englisch

Beteiligte Personen:

Jeon, Myeong Jin [VerfasserIn]
Kim, Soo-Kyung [VerfasserIn]
Hwang, Sang-Hyun [VerfasserIn]
Lee, Jong Uk [VerfasserIn]
Sim, Sang Jun [VerfasserIn]

Links:

Volltext

Themen:

7440-57-5
Bacteriophage template
Gold
Infectious disease
Journal Article
Lateral flow immunoassay
Nanoparticle assembly
PH-induced
Surface-enhanced Raman scattering

Anmerkungen:

Date Completed 14.02.2024

Date Revised 14.02.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.bios.2024.116061

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM367685396