High-density lipoprotein cholesterol subfraction HDL2 is associated with improved endothelial function in systemic lupus erythematosus

© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ..

OBJECTIVE: Patients with systemic lupus erythematosus (SLE) have increased risk of premature atherosclerosis but the exact mechanisms remains unclear. Flow-mediated dilatation (FMD) is an established non-invasive assessment of vascular endothelial function. Lipoprotein subfractions may be better predictors of FMD than conventional cholesterol measurements. We tested the hypothesis that lipoprotein subfractions are independently associated with FMD.

METHODS: Forty-one consecutive adult patients with SLE without known cardiovascular risk factors or disease were recruited in this cross-sectional study. Endothelial function and early atherosclerosis were assessed by brachial FMD and common carotid artery (CCA) intima-media thickness (IMT). High-density lipoprotein (HDL)/low-density lipoprotein (LDL) subfractions were measured. Machine learning models were also constructed to predict FMD and CCA IMT.

RESULTS: Median FMD was 4.48% (IQR 5.00%) while median IMT was 0.54 mm (IQR 0.12 mm). Univariate analysis showed lower LDL1 (r=-0.313, p<0.05) and higher HDL2 subfractions (r=0.313, p<0.05) were significantly associated with higher log-transformed FMD. In a multiple linear regression model, HDL2 (β=0.024, SE=0.012, p<0.05) remained an independent predictor of higher FMD after adjusting for age, body mass index, LDL1 and systolic blood pressure. The machine learning model included parameters such as HDL2 (positive association), prednisolone dose, LDL cholesterol and LDL1 for prediction of FMD (r=0.433, p<0.01). Age, LDL cholesterol and systolic blood pressure were independently associated with higher CCA IMT after adjusting for body mass index and HDL2.

CONCLUSIONS: HDL 2, a large HDL particle, was independently associated with greater FMD and may be a biomarker of vascular health in SLE.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:11

Enthalten in:

Lupus science & medicine - 11(2024), 1 vom: 22. Jan.

Sprache:

Englisch

Beteiligte Personen:

Lee, Ainsley Ryan Yan Bin [VerfasserIn]
Yau, Chun En [VerfasserIn]
Chua, Cheryl Kai Ting [VerfasserIn]
Cheng, Wan Ling [VerfasserIn]
Chia, Avery Joy Li [VerfasserIn]
Wong, Shi Yin [VerfasserIn]
Kow, Nien Yee [VerfasserIn]
Gong, Lingli [VerfasserIn]
Lee, Bernett Teck Kwong [VerfasserIn]
Ling, Lieng Hsi [VerfasserIn]
Mak, Anselm [VerfasserIn]
Loh, Tze Ping [VerfasserIn]
Tay, Sen Hee [VerfasserIn]

Links:

Volltext

Themen:

97C5T2UQ7J
Atherosclerosis
Cholesterol
Cholesterol, LDL
Journal Article
Lipids
Lipoproteins, HDL
Lipoproteins, HDL2
Systemic Lupus Erythematosus

Anmerkungen:

Date Completed 25.01.2024

Date Revised 26.01.2024

published: Electronic

Citation Status MEDLINE

doi:

10.1136/lupus-2023-001030

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM36753052X