Glia-derived adenosine in the ventral hippocampus drives pain-related anxiodepression in a mouse model resembling trigeminal neuralgia

Copyright © 2024 Elsevier Inc. All rights reserved..

Glial activation and dysregulation of adenosine triphosphate (ATP)/adenosine are involved in the neuropathology of several neuropsychiatric illnesses. The ventral hippocampus (vHPC) has attracted considerable attention in relation to its role in emotional regulation. However, it is not yet clear how vHPC glia and their derived adenosine regulate the anxiodepressive-like consequences of chronic pain. Here, we report that chronic cheek pain elevates vHPC extracellular ATP/adenosine in a mouse model resembling trigeminal neuralgia (rTN), which mediates pain-related anxiodepression, through a mechanism that involves synergistic effects of astrocytes and microglia. We found that rTN resulted in robust activation of astrocytes and microglia in the CA1 area of the vHPC (vCA1). Genetic or pharmacological inhibition of astrocytes and connexin 43, a hemichannel mainly distributed in astrocytes, completely attenuated rTN-induced extracellular ATP/adenosine elevation and anxiodepressive-like behaviors. Moreover, inhibiting microglia and CD39, an enzyme primarily expressed in microglia that degrades ATP into adenosine, significantly suppressed the increase in extracellular adenosine and anxiodepressive-like behaviors. Blockade of the adenosine A2A receptor (A2AR) alleviated rTN-induced anxiodepressive-like behaviors. Furthermore, interleukin (IL)-17A, a pro-inflammatory cytokine probably released by activated microglia, markedly increased intracellular calcium in vCA1 astrocytes and triggered ATP/adenosine release. The astrocytic metabolic inhibitor fluorocitrate and the CD39 inhibitor ARL 67156, attenuated IL-17A-induced increases in extracellular ATP and adenosine, respectively. In addition, astrocytes, microglia, CD39, and A2AR inhibitors all reversed rTN-induced hyperexcitability of pyramidal neurons in the vCA1. Taken together, these findings suggest that activation of astrocytes and microglia in the vCA1 increases extracellular adenosine, which leads to pain-related anxiodepression via A2AR activation. Approaches targeting astrocytes, microglia, and adenosine signaling may serve as novel therapies for pain-related anxiety and depression.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:117

Enthalten in:

Brain, behavior, and immunity - 117(2024) vom: 18. März, Seite 224-241

Sprache:

Englisch

Beteiligte Personen:

Lv, Xue-Jing [VerfasserIn]
Lv, Su-Su [VerfasserIn]
Wang, Guo-Hong [VerfasserIn]
Chang, Yue [VerfasserIn]
Cai, Ya-Qi [VerfasserIn]
Liu, Hui-Zhu [VerfasserIn]
Xu, Guang-Zhou [VerfasserIn]
Xu, Wen-Dong [VerfasserIn]
Zhang, Yu-Qiu [VerfasserIn]

Links:

Volltext

Themen:

8L70Q75FXE
Adenosine
Adenosine Triphosphate
Anxiodepression
Astrocyte
Journal Article
K72T3FS567
Microglia
Research Support, Non-U.S. Gov't
Trigeminal neuralgia
Ventral hippocampus

Anmerkungen:

Date Completed 04.03.2024

Date Revised 07.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.bbi.2024.01.012

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM367354357