Flow-Limited and Reverse-Triggered Ventilator Dyssynchrony Are Associated With Increased Tidal and Dynamic Transpulmonary Pressure

Copyright © 2024 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved..

OBJECTIVES: Ventilator dyssynchrony may be associated with increased delivered tidal volumes (V t s) and dynamic transpulmonary pressure (ΔP L,dyn ), surrogate markers of lung stress and strain, despite low V t ventilation. However, it is unknown which types of ventilator dyssynchrony are most likely to increase these metrics or if specific ventilation or sedation strategies can mitigate this potential.

DESIGN: A prospective cohort analysis to delineate the association between ten types of breaths and delivered V t , ΔP L,dyn , and transpulmonary mechanical energy.

SETTING: Patients admitted to the medical ICU.

PATIENTS: Over 580,000 breaths from 35 patients with acute respiratory distress syndrome (ARDS) or ARDS risk factors.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Patients received continuous esophageal manometry. Ventilator dyssynchrony was identified using a machine learning algorithm. Mixed-effect models predicted V t , ΔP L,dyn , and transpulmonary mechanical energy for each type of ventilator dyssynchrony while controlling for repeated measures. Finally, we described how V t , positive end-expiratory pressure (PEEP), and sedation (Richmond Agitation-Sedation Scale) strategies modify ventilator dyssynchrony's association with these surrogate markers of lung stress and strain. Double-triggered breaths were associated with the most significant increase in V t , ΔP L,dyn , and transpulmonary mechanical energy. However, flow-limited, early reverse-triggered, and early ventilator-terminated breaths were also associated with significant increases in V t , ΔP L,dyn , and energy. The potential of a ventilator dyssynchrony type to increase V t , ΔP L,dyn , or energy clustered similarly. Increasing set V t may be associated with a disproportionate increase in high-volume and high-energy ventilation from double-triggered breaths, but PEEP and sedation do not clinically modify the interaction between ventilator dyssynchrony and surrogate markers of lung stress and strain.

CONCLUSIONS: Double-triggered, flow-limited, early reverse-triggered, and early ventilator-terminated breaths are associated with increases in V t , ΔP L,dyn , and energy. As flow-limited breaths are more than twice as common as double-triggered breaths, further work is needed to determine the interaction of ventilator dyssynchrony frequency to cause clinically meaningful changes in patient outcomes.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:52

Enthalten in:

Critical care medicine - 52(2024), 5 vom: 01. Apr., Seite 743-751

Sprache:

Englisch

Beteiligte Personen:

Sottile, Peter D [VerfasserIn]
Smith, Bradford [VerfasserIn]
Stroh, Jake N [VerfasserIn]
Albers, David J [VerfasserIn]
Moss, Marc [VerfasserIn]

Links:

Volltext

Themen:

Biomarkers
Journal Article

Anmerkungen:

Date Completed 16.04.2024

Date Revised 25.04.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1097/CCM.0000000000006180

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM367051168