Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production

Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS-based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III, and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP, and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.

Errataetall:

UpdateOf: bioRxiv. 2023 Oct 18;:. - PMID 37904938

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:121

Enthalten in:

Proceedings of the National Academy of Sciences of the United States of America - 121(2024), 3 vom: 16. Jan., Seite e2307904121

Sprache:

Englisch

Beteiligte Personen:

Bennett, Neal K [VerfasserIn]
Lee, Megan [VerfasserIn]
Orr, Adam L [VerfasserIn]
Nakamura, Ken [VerfasserIn]

Links:

Volltext

Themen:

8L70Q75FXE
ATP
Adenosine Triphosphate
CRISPRi
Journal Article
Metabolism
Mitochondria
Mitochondrial Proteins
ROS
Reactive Oxygen Species

Anmerkungen:

Date Completed 15.01.2024

Date Revised 10.02.2024

published: Print-Electronic

UpdateOf: bioRxiv. 2023 Oct 18;:. - PMID 37904938

Citation Status MEDLINE

doi:

10.1073/pnas.2307904121

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM366976567