Porous Precision-Templated 40 μm Pore Scaffolds Promote Healing through Synergy in Macrophage Receptor with Collagenous Structure and Toll-Like Receptor Signaling

Porous precision-templated scaffolds (PTS) with uniform, interconnected, 40 μm pores have shown favorable healing outcomes and a reduced foreign body reaction (FBR). Macrophage receptor with collagenous structure (MARCO) and toll-like receptors (TLRs) have been identified as key surface receptors in the initial inflammatory phase of wound healing. However, the role of MARCO and TLRs in modulating monocyte and macrophage phenotypes within PTS remains uncharacterized. In this study, we demonstrate a synergetic relationship between MARCO and TLR signaling in cells inhabiting PTS, where induction with TLR3 or TLR4 agonists to 40 μm scaffold-resident cells upregulates the transcription of MARCO. Upon deletion of MARCO, the prohealing phenotype within 40 μm PTS polarizes to a proinflammatory and profibrotic phenotype. Analysis of downstream TLR signaling shows that MARCO is required to attenuate nuclear factor kappa B (NF-κB) inflammation in 40 μm PTS by regulating the transcription of inhibitory NFKB inhibitor alpha (NFKBIA) and interleukin-1 receptor-associated kinase 3 (IRAK-M), primarily through a MyD88-dependent signaling pathway. Investigation of implant outcome in the absence of MARCO demonstrates an increase in collagen deposition within the scaffold and the development of tissue fibrosis. Overall, these results further our understanding of the molecular mechanisms underlying MARCO and TLR signaling within PTS. Impact statement Monocyte and macrophage phenotypes in the foreign body reaction (FBR) are essential for the development of a proinflammatory, prohealing, or profibrotic response to implanted biomaterials. Identification of key surface receptors and signaling mechanisms that give rise to these phenotypes remain to be elucidated. In this study, we report a synergistic relationship between macrophage receptor with collagenous structure (MARCO) and toll-like receptor (TLR) signaling in scaffold-resident cells inhabiting porous precision-templated 40 μm pore scaffolds through a MyD88-dependent pathway that promotes healing. These findings advance our understanding of the FBR and provide further evidence that suggests MARCO, TLRs, and fibrosis may be interconnected.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:30

Enthalten in:

Tissue engineering. Part A - 30(2024), 7-8 vom: 05. Apr., Seite 287-298

Sprache:

Englisch

Beteiligte Personen:

Chan, Nathan R [VerfasserIn]
Hwang, Billanna [VerfasserIn]
Mulligan, Michael S [VerfasserIn]
Ratner, Buddy D [VerfasserIn]
Bryers, James D [VerfasserIn]

Links:

Volltext

Themen:

Biomaterial scaffolds
Cell phenotype
Fibrosis
Foreign body response
Journal Article
Macrophage polarization
MyD88
Myeloid Differentiation Factor 88
NF-kappa B
Toll-Like Receptors

Anmerkungen:

Date Completed 17.04.2024

Date Revised 26.04.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1089/ten.TEA.2023.0144

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM366962426