Combination of gold nanoclusters and silicon quantum dots for ratiometric fluorometry : One system, two mechanisms

Copyright © 2024 Elsevier B.V. All rights reserved..

A ratiometric fluorometry based on silicon quantum dots (SiQDs) and gold nanoclusters (AuNCs) is constructed for detecting activity of butyrylcholinesterase (BChE) in human serum. By using thiobutyrylcholine iodide (BTCh) as the substrate of BChE-catalyzed hydrolysis reaction, variation of fluorescence emission from AuNCs is employed as an indicator of BChE activity since one of the hydrolysis products, thiocholine (TCh), would influence the aggregation state of AuNCs and consequently led to the change of fluorescence quantum efficiency of AuNCs. It is interesting that there are two mechanisms working for the fluorescence emission of aggregated AuNCs: aggregation-induced emission enhancement (AIEE) and aggregation-caused quenching (ACQ) with the presence of TCh at very low and higher concentration levels, respectively. Although both of these mechanisms can be utilized for sensing BChE, their opposite influence on the fluorescence emission of aggregated AuNCs should be worthy of attention, especially in the process of developing fluorescence methods for detecting trace targets by using AuNCs. In order to eliminate the fluctuation of fluorophotometer, SiQDs is chosen as the fluorophore to develop by ratiometric fluorescence methods in this work. Additionally, obvious aggregation of AuNCs induces significant decrease of inner filter effect (IFE) on the fluorescence emitted from SiQDs, while mild aggregation of AuNCs demonstrates little IFE. The linear ranges for detecting activity of BChE are 0.004 - 0.05 U/L and 0.5 - 20 U/L by ratiometric fluorometry based on the AIEE and ACQ, respectively. The very different responses originated from AIEE and ACQ of AuNCs would respectively make their own contributions to the determination of BChE activities at very low or high levels, which facilitate the developments of enhanced or quenched fluorescence methods. However, the detection of BChE activities at medium levels might suffer from the combination of AIEE and ACQ with ambiguous fractions. Therefore, it must be careful during the processes of developing and applying fluorescence methods based on the AIEE and ACQ of AuNCs, as well as the process of evaluating their analytical performance.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:240

Enthalten in:

Journal of pharmaceutical and biomedical analysis - 240(2024) vom: 15. Feb., Seite 115940

Sprache:

Englisch

Beteiligte Personen:

Wang, Haozhi [VerfasserIn]
Lai, Jinyu [VerfasserIn]
Xu, Xiaohui [VerfasserIn]
Yu, Wei [VerfasserIn]
Wang, Xinghua [VerfasserIn]

Links:

Volltext

Themen:

7440-57-5
ACQ
AIEE
AuNCs
Butyrylcholinesterase
EC 3.1.1.8
Gold
Human blood
Journal Article
SiQDs
Silicon
Z4152N8IUI

Anmerkungen:

Date Completed 21.02.2024

Date Revised 21.02.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.jpba.2023.115940

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM366894692