Photo-Assisted Li-N2 Batteries with Enhanced Nitrogen Fixation and Energy Conversion

© 2024 Wiley-VCH GmbH..

Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:63

Enthalten in:

Angewandte Chemie (International ed. in English) - 63(2024), 11 vom: 11. März, Seite e202319211

Sprache:

Englisch

Beteiligte Personen:

Li, Jian-You [VerfasserIn]
Du, Xing-Yuan [VerfasserIn]
Wang, Xiao-Xue [VerfasserIn]
Yuan, Xin-Yuan [VerfasserIn]
Guan, De-Hui [VerfasserIn]
Xu, Ji-Jing [VerfasserIn]

Links:

Volltext

Themen:

Fast Kinetics
Journal Article
Li-N2 Batteries
Low Overpotential
Photo-Assisted

Anmerkungen:

Date Revised 04.03.2024

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1002/anie.202319211

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM36688784X