Marine diatom algae cultivation in simulated dairy wastewater and biomass valorization

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature..

Liquid byproducts and organic wastes generated from dairy processing units contribute as the largest source of industrial food wastewater. Though bacteria-mediated treatment strategies are largely implemented, a more effective and innovative management system is needed of the hour. Thus, the current study involves the cultivation of centric diatoms, Chaetoceros gracilis, and Thalassiosira weissflogii in simulated dairy wastewater (SDWW) formulated using varying amounts of milk powder with artificial seawater f/2 media (ASW). The results revealed that cell density and biomass productivity were highest in the 2.5% SDWW treatment cultures of both the strains, the maximum being in C. gracilis (7.5 × 106 cells mL - 1; 21.1 mg L-1 day-1). Conversely, the total carotenoid, chrysolaminarin, and phenol content were negatively impacted by SDWW. However, a considerable enhancement in the total lipid content was reported in the 2.5% SDWW culture of both species. Furthermore, the fatty acid profiling revealed that though the total polyunsaturated fatty acid (PUFA) content was highest in the control setups, the total mono polyunsaturated fatty acid (MUFA) content was higher in the 5% SDWW setups (30.66% in C. gracilis and 33.21% in T. weissflogii). In addition to it, in the cultures utilizing energy from external carbon sources provided by SDWW, the biodiesel produced was also enhanced owing to the heightened cetane number. Thus, the current study evidently highlights the organic carbon acquisition potential of marine diatoms with the scope of providing sustainable biorefinery.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - year:2024

Enthalten in:

Environmental science and pollution research international - (2024) vom: 04. Jan.

Sprache:

Englisch

Beteiligte Personen:

Singh, Pankaj Kumar [VerfasserIn]
Marella, Thomas Kiran [VerfasserIn]
Bhattacharjya, Raya [VerfasserIn]
Tyagi, Rashi [VerfasserIn]
Plaha, Navdeep Singh [VerfasserIn]
Kaushik, Nutan [VerfasserIn]
Tiwari, Archana [VerfasserIn]

Links:

Volltext

Themen:

Biodiesel
Chaetoceros gracilis
Journal Article
Mixotrophy
Phycoremediation
Polyunsaturated fatty acid
Thalassiosira weisflogii

Anmerkungen:

Date Revised 04.01.2024

published: Print-Electronic

Citation Status Publisher

doi:

10.1007/s11356-023-31531-3

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM366661329