Machine learning-guided design of potent darunavir analogs targeting HIV-1 proteases : A computational approach for antiretroviral drug discovery

© 2024 Wiley Periodicals LLC..

In the pursuit of novel antiretroviral therapies for human immunodeficiency virus type-1 (HIV-1) proteases (PRs), recent improvements in drug discovery have embraced machine learning (ML) techniques to guide the design process. This study employs ensemble learning models to identify crucial substructures as significant features for drug development. Using molecular docking techniques, a collection of 160 darunavir (DRV) analogs was designed based on these key substructures and subsequently screened using molecular docking techniques. Chemical structures with high fitness scores were selected, combined, and one-dimensional (1D) screening based on beyond Lipinski's rule of five (bRo5) and ADME (absorption, distribution, metabolism, and excretion) prediction implemented in the Combined Analog generator Tool (CAT) program. A total of 473 screened analogs were subjected to docking analysis through convolutional neural networks scoring function against both the wild-type (WT) and 12 major mutated PRs. DRV analogs with negative changes in binding free energy ( ΔΔ G bind ) compared to DRV could be categorized into four attractive groups based on their interactions with the majority of vital PRs. The analysis of interaction profiles revealed that potent designed analogs, targeting both WT and mutant PRs, exhibited interactions with common key amino acid residues. This observation further confirms that the ML model-guided approach effectively identified the substructures that play a crucial role in potent analogs. It is expected to function as a powerful computational tool, offering valuable guidance in the identification of chemical substructures for synthesis and subsequent experimental testing.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:45

Enthalten in:

Journal of computational chemistry - 45(2024), 13 vom: 15. Apr., Seite 953-968

Sprache:

Englisch

Beteiligte Personen:

Chuntakaruk, Hathaichanok [VerfasserIn]
Boonpalit, Kajjana [VerfasserIn]
Kinchagawat, Jiramet [VerfasserIn]
Nakarin, Fahsai [VerfasserIn]
Khotavivattana, Tanatorn [VerfasserIn]
Aonbangkhen, Chanat [VerfasserIn]
Shigeta, Yasuteru [VerfasserIn]
Hengphasatporn, Kowit [VerfasserIn]
Nutanong, Sarana [VerfasserIn]
Rungrotmongkol, Thanyada [VerfasserIn]
Hannongbua, Supot [VerfasserIn]

Links:

Volltext

Themen:

Darunavir
EC 3.4.-
EC 3.4.23.-
Ensemble learning model
HIV Protease
HIV Protease Inhibitors
Human immunodeficiency virus type‐1 protease
Important feature
Interaction profile
Journal Article
Peptide Hydrolases
YO603Y8113

Anmerkungen:

Date Completed 05.04.2024

Date Revised 05.04.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1002/jcc.27298

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM366654012