Controlling the Charge Density Wave Transition in Single-Layer TiTe2xSe2(1-x) Alloys by Band Gap Engineering

Closing the band gap of a semiconductor into a semimetallic state gives a powerful potential route to tune the electronic energy gains that drive collective phases like charge density waves (CDWs) and excitonic insulator states. We explore this approach for the controversial CDW material monolayer (ML) TiSe2 by engineering its narrow band gap to the semimetallic limit of ML-TiTe2. Using molecular beam epitaxy, we demonstrate the growth of ML-TiTe2xSe2(1-x) alloys across the entire compositional range and unveil how the (2 × 2) CDW instability evolves through the normal state semiconductor-semimetal transition via in situ angle-resolved photoemission spectroscopy. Through model electronic structure calculations, we identify how this tunes the relative strength of excitonic and Peierls-like coupling, demonstrating band gap engineering as a powerful method for controlling the microscopic mechanisms underpinning the formation of collective states in two-dimensional materials.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:24

Enthalten in:

Nano letters - 24(2024), 1 vom: 10. Jan., Seite 215-221

Sprache:

Englisch

Beteiligte Personen:

Antonelli, Tommaso [VerfasserIn]
Rajan, Akhil [VerfasserIn]
Watson, Matthew D [VerfasserIn]
Soltani, Shoresh [VerfasserIn]
Houghton, Joe [VerfasserIn]
Siemann, Gesa-Roxanne [VerfasserIn]
Zivanovic, Andela [VerfasserIn]
Bigi, Chiara [VerfasserIn]
Edwards, Brendan [VerfasserIn]
King, Phil D C [VerfasserIn]

Links:

Volltext

Themen:

2D materials
Angle-resolved photoemission spectroscopy
Charge density wave
Excitonic insulator
Journal Article
Molecular beam epitaxy
Transition-metal dichalcogenide

Anmerkungen:

Date Revised 14.01.2024

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1021/acs.nanolett.3c03776

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM366083732