Hypothermia Attenuates Neurotoxic Microglial Activation via TRPV4

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature..

Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:49

Enthalten in:

Neurochemical research - 49(2024), 3 vom: 01. Feb., Seite 800-813

Sprache:

Englisch

Beteiligte Personen:

Fukuda, Naoya [VerfasserIn]
Toriuchi, Kohki [VerfasserIn]
Mimoto, Rina [VerfasserIn]
Aoki, Hiromasa [VerfasserIn]
Kakita, Hiroki [VerfasserIn]
Suzuki, Yoshiaki [VerfasserIn]
Takeshita, Satoru [VerfasserIn]
Tamura, Tetsuya [VerfasserIn]
Yamamura, Hisao [VerfasserIn]
Inoue, Yasumichi [VerfasserIn]
Hayashi, Hidetoshi [VerfasserIn]
Yamada, Yasumasa [VerfasserIn]
Aoyama, Mineyoshi [VerfasserIn]

Links:

Volltext

Themen:

31C4KY9ESH
AMP-Activated Protein Kinases
AMPK
Antineoplastic Agents
EC 2.7.11.31
Hypothermia
Journal Article
Lipopolysaccharides
Microglia
NF-κB Neuronal damage
NF-kappa B
Neuroprotective Agents
Nitric Oxide
TRPV Cation Channels
TRPV4
TRPV4 protein, human

Anmerkungen:

Date Completed 23.02.2024

Date Revised 23.02.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1007/s11064-023-04075-8

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM366036726