Wavelet MRE : Imaging propagating broadband acoustic waves with wavelet-based motion-encoding gradients

© 2023 International Society for Magnetic Resonance in Medicine..

PURPOSE: To demonstrate a novel MR elastography (MRE) technique, termed here wavelet MRE. With this technique, broadband motion sensitivity is achievable. Moreover, the true tissue displacement can be reconstructed with a simple inverse transform.

METHODS: A wavelet MRE sequence was developed with motion-encoding gradients based on Haar wavelets. From the phase images' displacement was estimated using an inverse transform. Simulations were performed using a frequency sweep and a transient as ground-truth motions. A PVC phantom was scanned using wavelet MRE and standard MRE with both transient (one and 10 cycles of 90-Hz motion) and steady-state dual-frequency motion (30 and 60 Hz) for comparison. The technique was tested in a human brain, and motion trajectories were estimated for each voxel.

RESULTS: In simulation, the displacement information estimated from wavelet MRE closely matched the true motion. In the phantom test, the MRE phase data generated from the displacement information derived from wavelet MRE agreed well with standard MRE data. Testing of wavelet MRE to assess transient motion waveforms in the brain was successful, and the tissue motion observed was consistent with a previous study.

CONCLUSION: The uniform and broadband frequency response of wavelet MRE makes it a promising method for imaging transient, multifrequency motion, or motion with unknown frequency content. One potential application is measuring the response of brain tissue undergoing low-amplitude, transient vibrations as a model for the study of traumatic brain injury.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:91

Enthalten in:

Magnetic resonance in medicine - 91(2024), 5 vom: 20. März, Seite 1923-1935

Sprache:

Englisch

Beteiligte Personen:

Le, Yuan [VerfasserIn]
Chen, Jun [VerfasserIn]
Rossman, Phillip J [VerfasserIn]
Bolster, Bradley [VerfasserIn]
Kannengiesser, Stephan [VerfasserIn]
Manduca, Armando [VerfasserIn]
Glaser, Kevin J [VerfasserIn]
Sui, Yi [VerfasserIn]
Huston, John [VerfasserIn]
Yin, Ziying [VerfasserIn]
Ehman, Richard L [VerfasserIn]

Links:

Volltext

Themen:

Haar transform
Journal Article
MRE
Magnetic resonance elastography
Multifrequency MRE
Transient MRE
Wavelet MRE

Anmerkungen:

Date Completed 20.03.2024

Date Revised 22.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1002/mrm.29972

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM365891142