Hierarchical Mechanical Transduction of Precision-Engineered DNA Hydrogels with Sacrificial Bonds

Engineering the response to external signals in mechanically switchable hydrogels is important to promote smart materials applications. However, comparably little attention has focused on embedded precision mechanisms for autonomous nonlinear response in mechanical profiles in hydrogels, and we lack understanding of how the behavior from the molecular scale transduces to the macroscale. Here, we design a nonlinear stress-strain response into hydrogels by engineering sacrificial DNA hairpin loops into model network hydrogels formed from star-shaped building blocks. We characterize the force-extension response of single DNA hairpins and are able to describe how the specific topology influences the nonlinear mechanical behavior at different length scales. For this purpose, we utilize force spectroscopy as well as microscopic and macroscopic deformation tests. This study contributes to a better understanding of designing nonlinear strain-adaptive features into hydrogel materials.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:15

Enthalten in:

ACS applied materials & interfaces - 15(2023), 51 vom: 27. Dez., Seite 59714-59721

Sprache:

Englisch

Beteiligte Personen:

Lallemang, Max [VerfasserIn]
Akintayo, Cecilia Oluwadunsin [VerfasserIn]
Wenzel, Christiane [VerfasserIn]
Chen, Weixiang [VerfasserIn]
Sielaff, Lucca [VerfasserIn]
Ripp, Alexander [VerfasserIn]
Jessen, Henning J [VerfasserIn]
Balzer, Bizan N [VerfasserIn]
Walther, Andreas [VerfasserIn]
Hugel, Thorsten [VerfasserIn]

Links:

Volltext

Themen:

9007-49-2
AFM
DNA
Hydrogel
Hydrogels
Journal Article
Nonlinear response
Single molecule studies
Smart Materials

Anmerkungen:

Date Completed 28.12.2023

Date Revised 28.12.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1021/acsami.3c15135

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM365857742