Time scale theory on stability of explicit and implicit discrete epidemic models : applications to Swine flu outbreak

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature..

Time scales theory has been in use since the 1980s with many applications. Only very recently, it has been used to describe within-host and between-hosts dynamics of infectious diseases. In this study, we present explicit and implicit discrete epidemic models motivated by the time scales modeling approach. We use these models to formulate the basic reproduction number, which determines whether an outbreak occurs or the disease dies out. We discuss the stability of the disease-free and endemic equilibrium points using the linearization method and Lyapunov function. Furthermore, we apply our models to swine flu outbreak data to demonstrate that the discrete models can accurately describe the epidemic dynamics. Our comparison analysis shows that the implicit discrete model can best describe the data regardless of the data frequency. In addition, we perform the sensitivity analysis on the key parameters of the models to study how these parameters impact the basic reproduction number.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:88

Enthalten in:

Journal of mathematical biology - 88(2023), 1 vom: 01. Dez., Seite 6

Sprache:

Englisch

Beteiligte Personen:

Yeni, Gülşah [VerfasserIn]
Akın, Elvan [VerfasserIn]
Vaidya, Naveen K [VerfasserIn]

Links:

Volltext

Themen:

Difference equations
Global stability
Influenza outbreak in rural campus
Journal Article
Local stability
Lyapunov
Positive equilibrium points
SIR epidemic models

Anmerkungen:

Date Completed 04.12.2023

Date Revised 04.03.2024

published: Electronic

Citation Status MEDLINE

doi:

10.1007/s00285-023-02015-2

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM365297453