Quantification of nanoplastic uptake and distribution in the root, stem and leaves of the edible herb Lepidum sativum

Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved..

This study confirms the uptake, translocation and bioaccumulation of 100 nm polystyrene nanoplastics in the root, stem and leaves of the plant Lepidum sativum at exposure concentrations ranging from environmentally realistic 10 μg/L up to a high of 100 mg/L. Accumulation in plant tissues was characterised by aggregation in the intercellular spaces and heterogeneous distribution. Nanoplastic presence was confirmed in the root tips, root surface and stele, lateral roots, root hairs, stem vascular bundles, leaf veins and mesophyll, as well as leaf epidermis including stomatal sites. Quantification results show that majority of the particles were retained in the root and accumulation in stem and leaves was only 13 to 18 % of the median value in roots. There was a reduction of 38.89 ± 9.62 % in the germination rate, 55 % in plant fresh weight, as well as in root weight (> 80 %), root length (> 60 %), shoot weight (51 to 78 %) and number of lateral roots (> 28 %) at exposure concentrations at and above 50 mg/L. However, lower, environmentally probable exposure concentrations did not affect the plant health significantly. Our results highlight the urgent need for further exploration of this issue from the point of view of food safety and security. STATEMENT OF ENVIRONMENTAL IMPLICATION: Micro and nanoplastics have been reported in agricultural environments across the globe and reports regarding their hazardous effects over agricultural and plant health call for an urgent exploration of this issue. This work demonstrates the uptake, bioaccumulation and distribution of nanoplastics in an edible plant at an environmentally realistic concentration and raises serious concerns regarding the possible implications for food safety and security. It presents a novel approach which addresses the quantification of nanoplastic accumulation in plant tissues and helps identify the mechanism and trends behind this phenomenon which has been a challenge up until now.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:912

Enthalten in:

The Science of the total environment - 912(2024) vom: 20. Jan., Seite 168903

Sprache:

Englisch

Beteiligte Personen:

Sahai, Harshit [VerfasserIn]
Bueno, María Jesús Martínez [VerfasserIn]
Del Mar Gómez-Ramos, María [VerfasserIn]
Fernández-Alba, Amadeo R [VerfasserIn]
Hernando, María Dolores [VerfasserIn]

Links:

Volltext

Themen:

Bioaccumulation
Food safety
Journal Article
Microplastics
Nanoplastic uptake
Quantification
Translocation

Anmerkungen:

Date Completed 18.01.2024

Date Revised 18.01.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.scitotenv.2023.168903

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM365042757