Recombinant Human Parathyroid Hormone Biocomposite Promotes Bone-to-Tendon Interface Healing by Enhancing Tenogenesis, Chondrogenesis, and Osteogenesis in a Rabbit Model of Chronic Rotator Cuff Tears

Copyright © 2023 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved..

PURPOSE: To investigate the effect of recombinant human parathyroid hormone (rhPTH) biocomposite on bone-to-tendon interface (BTI) healing for surgical repair of a chronic rotator cuff tear (RCT) model of rabbit, focusing on genetic, histologic, biomechanical and micro-computed tomography (CT) evaluations.

METHODS: Sixty-four rabbits were equally assigned to the 4 groups: saline injection (group A), nanofiber sheet alone (group B), rhPTH-soaked nanofiber sheet (nanofiber sheet was soaked with rhPTH, group C), and rhPTH biocomposite (rhPTH permeated the nanofiber sheet by coaxial electrospinning, group D). The release kinetics of rhPTH (groups C and D) was examined for 6 weeks in vitro. Nanofiber scaffolds were implanted on the surface of the repair site 6 weeks after the induction of chronic RCT. Genetic and histologic analyses were conducted 4 weeks after surgery. Furthermore, genetic, histologic, biomechanical, micro-CT, and serologic analyses were performed 12 weeks after surgery.

RESULTS: In vivo, group D showed the highest collagen type I alpha 1 (COL1A1), collagen type III alpha 1 (COL3A1), and bone morphogenetic protein 2 (BMP-2) messenger RNA (mRNA) expression levels (all P < .001) 4 weeks after surgery; however, there were no differences between groups at 12 weeks postsurgery. After 12 weeks postsurgery, group D showed better collagen fiber continuity and orientation, denser collagen fibers, more mature bone-to-tendon junction, and greater fibrocartilage layer formation compared with the other groups (all P < .05). Furthermore, group D showed the highest load-to-failure rate (28.9 ± 2.0 N/kg for group A, 30.1 ± 3.3 N/kg for group B, 39.7 ± 2.7 N/kg for group C, and 48.2 ± 4.5 N/kg for group D, P < .001) and micro-CT outcomes, including bone and tissue mineral density, and bone volume/total volume rate (all P < .001) at 12 weeks postsurgery.

CONCLUSIONS: In comparison to rhPTH-soaked nanofiber sheet and the other control groups, rhPTH biocomposite effectively accelerated BTI healing by enhancing the mRNA expression levels of COL1A1, COL3A1, and BMP-2 at an early stage and achieving tenogenesis, chondrogenesis, and osteogenesis at 12 weeks after surgical repair of a chronic RCT model of rabbit.

CLINICAL RELEVANCE: The present study might be a transitional study to demonstrate the efficacy of rhPTH biocomposites on BTI healing for surgical repair of chronic RCTs as an adaptable polymer biomaterial in humans.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:40

Enthalten in:

Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association - 40(2024), 4 vom: 23. März, Seite 1093-1104.e2

Sprache:

Englisch

Beteiligte Personen:

Han, Jian [VerfasserIn]
Han, Sheng Chen [VerfasserIn]
Jeong, Hyeon Jang [VerfasserIn]
Rhee, Sung Min [VerfasserIn]
Kim, Yeong Seo [VerfasserIn]
Jin, Yong Jun [VerfasserIn]
Park, Suk-Hee [VerfasserIn]
Oh, Joo Han [VerfasserIn]

Links:

Volltext

Themen:

9007-34-5
Collagen
Journal Article
Parathyroid Hormone
RNA, Messenger

Anmerkungen:

Date Completed 19.03.2024

Date Revised 19.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.arthro.2023.09.034

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM364917369