Identification of Diagnosis and Typological Characteristics Associated with Ferroptosis for Ulcerative Colitis via Bioinformatics and Machine Learning

Copyright© Bentham Science Publishers; For any queries, please email at epubbenthamscience.net..

OBJECTIVE: To investigate and validate ferroptosis genes (FRGs) in ulcerative colitis (UC) for diagnostic, subtype, and biological agent reactivity, with the goal of providing a foundation for the identification of novel therapeutic targets and the rational use of infliximab in clinical practice.

METHODS: UC datasets and FRGs were selected from the Gene Expression Omnibus (GEO) and FerrDb databases. WGCNA was used to identify characteristic genes of UC. LASSO and SVM models were used to discover key FRGs in UC. A nomogram was constructed for diagnosing UC using logistic regression (LR), We performed internal and external validation for the model. Furthermore, we constructed a hub-gene-signature prediction model for the effectiveness of infliximab in treating UC and deployed it on the website. Finally, the hub gene-drug interaction networks were constructed.

RESULTS: Nineteen ferroptosis-related genes associated with UC were identified through bioinformatics analysis. FTH1 and GPX4 were two of the down-regulated genes.The seventeen upregulated genes consisted of DUOX1, DUOX2, SOCS1, LPIN1, QSOX1, TRIM21, IDO1, SLC7A11, MUC1, HSPA5, SCD, ACSL3, NOS2, PARP9, PARP14, LCN2, and TRIB2. Five hub genes, including LCN2, QSOX1, MUC1, IDO1, and TRIB2, were acquried via machine learning. The mean auc of internal validation was 0.964 and 0.965 respectively, after using cross-validation and bootstrap in the training set based on the 5 hub-gene diagnostic models. In the external validation set, the AUC reached 0.976 and 0.858. RF model performs best in predicting infliximab effectiveness. In addition, we identified two ferroptosis subtypes. Cluster A mostly overlaps with the high-risk score group, with a hyperinflammatory phenotype.

CONCLUSIONS: This research indicated that five hub genes related to ferroptosis might be potential markers in diagnosing and predicting infliximab sensitivity for UC.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - year:2023

Enthalten in:

Endocrine, metabolic & immune disorders drug targets - (2023) vom: 10. Nov.

Sprache:

Englisch

Beteiligte Personen:

Wang, Weihao [VerfasserIn]
Ma, Hao [VerfasserIn]
Song, Xujiao [VerfasserIn]
Ding, Shanshan [VerfasserIn]

Links:

Volltext

Themen:

Diagnostic model
Ferroptosis
Infliximab reactivity
Journal Article
Machine learning
Ulcerative colitis

Anmerkungen:

Date Revised 14.11.2023

published: Print-Electronic

Citation Status Publisher

doi:

10.2174/0118715303263609231101074056

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM364495456