The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) as well as hexabromocyclododecane lead to lipid disorders in mice

Copyright © 2023 Elsevier Ltd. All rights reserved..

The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) is a recommended substitute for hexabromocyclododecane (HBCD), a banned persistent organic pollutant, yet its potential toxicities remains largely unexplored. Here, we investigated the effects of a long-term exposure to TBBPA-DBMPE at nominal doses of 50 and 1000 μg/kg/d on lipid homeostasis in CD-1 mice, in comparison with 50 μg/kg/d HBCD as a positive control. Male pups received chemical treatments through maternal administration via drinking water from postnatal day 0-21, followed by direct administration through drinking water after weaning. On the 23rd week after treatment, the oral lipid tolerance test revealed that low-dose TBBPA-DBMPE as well as HBCD affected lipid tolerance, although the fasting serum triglyceride (TG) levels were not altered. When chemical treatment was extended to the 32nd week, TBBPA-DBMPE-treated animals displayed adipocyte hypertrophy in both white adipose tissue (eWAT) and brown adipose tissue (BAT) and hepatic steatosis, which was largely consistent with the effects of HBCD. These findings indicate that like HBCD, TBBPA-DBMPE led to increased lipid load in mice. Interestingly, we also observed intestinal histological changes, coupled with increased expression of lipid absorption-related genes in both HBCD and TBBPA-DBMPE treatments, suggesting increased lipid absorption. This was supported by in vitro findings that both HBCD and TBBPA-DBMPE promoted lipid accumulation in IEC-6 cells under the stress of oleic acid for 6 h, implying that altered lipid absorption by the intestine may partly contributed to increased lipid load in mice. Overall, the effects of 50 μg/kg/d TBBPA-DBMPE in terms of some parameters were comparable with 50 μg/kg/d HBCD, suggesting that TBBPA-DBMPE may not be an ideal substitute of HBCD.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:341

Enthalten in:

Environmental pollution (Barking, Essex : 1987) - 341(2024) vom: 15. Jan., Seite 122895

Sprache:

Englisch

Beteiligte Personen:

Chen, Xuan-Yue [VerfasserIn]
Li, Yuan-Yuan [VerfasserIn]
Lv, Lin [VerfasserIn]
Xiong, Yi-Ming [VerfasserIn]
Qin, Zhan-Fen [VerfasserIn]

Links:

Volltext

Themen:

0F5N573A2Y
5I9835JO3M
Adipocyte hypertrophy
Drinking Water
Ether
Ethers
Ethyl Ethers
FQI02RFC3A
Flame Retardants
Hepatic steatosis
Hexabromocyclododecane
Hydrocarbons, Brominated
Journal Article
Lipid disorder
Lipids
Polybrominated Biphenyls
Tetrabromobisphenol A
Tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether)

Anmerkungen:

Date Completed 08.01.2024

Date Revised 08.01.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.envpol.2023.122895

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM364408278