A quantitative evaluation of aerosol generation during cardiopulmonary resuscitation

© 2023 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists..

It is unclear if cardiopulmonary resuscitation is an aerosol-generating procedure and whether this poses a risk of airborne disease transmission to healthcare workers and bystanders. Use of airborne transmission precautions during cardiopulmonary resuscitation may confer rescuer protection but risks patient harm due to delays in commencing treatment. To quantify the risk of respiratory aerosol generation during cardiopulmonary resuscitation in humans, we conducted an aerosol monitoring study during out-of-hospital cardiac arrests. Exhaled aerosol was recorded using an optical particle sizer spectrometer connected to the breathing system. Aerosol produced during resuscitation was compared with that produced by control participants under general anaesthesia ventilated with an equivalent respiratory pattern to cardiopulmonary resuscitation. A porcine cardiac arrest model was used to determine the independent contributions of ventilatory breaths, chest compressions and external cardiac defibrillation to aerosol generation. Time-series analysis of participants with cardiac arrest (n = 18) demonstrated a repeating waveform of respiratory aerosol that mapped to specific components of resuscitation. Very high peak aerosol concentrations were generated during ventilation of participants with cardiac arrest with median (IQR [range]) 17,926 (5546-59,209 [1523-242,648]) particles.l-1 , which were 24-fold greater than in control participants under general anaesthesia (744 (309-2106 [23-9099]) particles.l-1 , p < 0.001, n = 16). A substantial rise in aerosol also occurred with cardiac defibrillation and chest compressions. In a complimentary porcine model of cardiac arrest, aerosol recordings showed a strikingly similar profile to the human data. Time-averaged aerosol concentrations during ventilation were approximately 270-fold higher than before cardiac arrest (19,410 (2307-41,017 [104-136,025]) vs. 72 (41-136 [23-268]) particles.l-1 , p = 0.008). The porcine model also confirmed that both defibrillation and chest compressions generate high concentrations of aerosol independent of, but synergistic with, ventilation. In conclusion, multiple components of cardiopulmonary resuscitation generate high concentrations of respiratory aerosol. We recommend that airborne transmission precautions are warranted in the setting of high-risk pathogens, until the airway is secured with an airway device and breathing system with a filter.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:79

Enthalten in:

Anaesthesia - 79(2024), 2 vom: 01. Feb., Seite 156-167

Sprache:

Englisch

Beteiligte Personen:

Shrimpton, A J [VerfasserIn]
Brown, V [VerfasserIn]
Vassallo, J [VerfasserIn]
Nolan, J P [VerfasserIn]
Soar, J [VerfasserIn]
Hamilton, F [VerfasserIn]
Cook, T M [VerfasserIn]
Bzdek, B R [VerfasserIn]
Reid, J P [VerfasserIn]
Makepeace, C H [VerfasserIn]
Deutsch, J [VerfasserIn]
Ascione, R [VerfasserIn]
Brown, J M [VerfasserIn]
Benger, J R [VerfasserIn]
Pickering, A E [VerfasserIn]

Links:

Volltext

Themen:

Aerosol-generating procedure
CPR
Cardiopulmonary resuscitation
Journal Article
Out-of-hospital cardiac arrest

Anmerkungen:

Date Completed 11.01.2024

Date Revised 22.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1111/anae.16162

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM364132965