Self-Assembled Au Nanoelectrodes : Enabling Low-Threshold-Voltage HfO2-Based Artificial Neurons

Filamentary-type resistive switching devices, such as conductive bridge random-access memory and valence change memory, have diverse applications in memory and neuromorphic computing. However, the randomness in filament formation poses challenges to device reliability and uniformity. To overcome this issue, various defect engineering methods have been explored, including doping, metal nanoparticle embedding, and extended defect utilization. In this study, we present a simple and effective approach using self-assembled uniform Au nanoelectrodes to controll filament formation in HfO2 resistive switching devices. By concentrating the electric field near the Au nanoelectrodes within the BaTiO3 matrix, we significantly enhanced the device stability and reduced the threshold voltage by up to 45% in HfO2-based artificial neurons compared to the control devices. The threshold voltage reduction is attributed to the uniformly distributed Au nanoelectrodes in the insulating matrix, as confirmed by COMSOL simulation. Our findings highlight the potential of nanostructure design for precise control of filamentary-type resistive switching devices.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:23

Enthalten in:

Nano letters - 23(2023), 21 vom: 08. Nov., Seite 9711-9718

Sprache:

Englisch

Beteiligte Personen:

Dou, Hongyi [VerfasserIn]
Lin, Zehao [VerfasserIn]
Hu, Zedong [VerfasserIn]
Tsai, Benson Kunhung [VerfasserIn]
Zheng, Dongqi [VerfasserIn]
Song, Jiawei [VerfasserIn]
Lu, Juanjuan [VerfasserIn]
Zhang, Xinghang [VerfasserIn]
Jia, Quanxi [VerfasserIn]
MacManus-Driscoll, Judith L [VerfasserIn]
Ye, Peide D [VerfasserIn]
Wang, Haiyan [VerfasserIn]

Links:

Volltext

Themen:

Artificial neuron
Defect engineering
HfO2
Journal Article
Threshold switching
Vertically aligned nanocomposite

Anmerkungen:

Date Revised 13.11.2023

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1021/acs.nanolett.3c02217

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM363675221