Sliding windows analysis can undo the effects of preprocessing when applied to fMRI data

Resting-state fMRI (rs-fMRI) data is used to study the intrinsic functional connectivity (FC) in the human brain. In the past decade, interest has focused on studying the temporal dynamics of FC on short timescales, ranging from seconds to minutes. These studies of time-varying FC (TVFC) have enabled the classification of whole-brain dynamic FC profiles into distinct "brain states", defined as recurring whole-brain connectivity profiles reliably observed across subjects and sessions. The analysis of rs-fMRI data is complicated by the fact that the measured BOLD signal consists of changes induced by neuronal activation, as well as non-neuronal nuisance fluctuations that should be removed prior to further analysis. Thus, the data undergoes significant preprocesing prior to analysis. In previous work [24], we illustrated the potential pitfalls involved with using modular preprocessing pipelines, showing how later preprocessing steps can reintroduce correlation with signal previously removed from the data. Here we show that the problem runs deeper, and that certain statistical analysis techniques can potentially interact with preprocessing and reintroduce correlations with previously removed signal. One such technique is the popular sliding window analysis, used to compute TVFC. In this paper, we discuss the problem both theoretically and empirically in application to test-retest rs-fMRI data. Importantly, we show that we are able to obtain essentially the same brain states and state transitions when analyzing motion induced signal as we do when analyzing the preprocessed but windowed data. Our results cast doubt on whether the estimated brain states obtained using sliding window analysis are neuronal in nature, or simply reflect non-neuronal nuisance signal variation (e.g., motion).

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - year:2024

Enthalten in:

bioRxiv : the preprint server for biology - (2024) vom: 14. Apr.

Sprache:

Englisch

Beteiligte Personen:

Lindquist, Martin A [VerfasserIn]

Links:

Volltext

Themen:

Artifacts
Dynamic connectivity
Motion
Preprint
Preprocessing
Resting-state fMRI
Time-varying connectivity

Anmerkungen:

Date Revised 25.04.2024

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1101/2023.10.06.561221

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM36365450X