CFD-based design optimization of ducted hydrokinetic turbines

© 2023. Springer Nature Limited..

Hydrokinetic turbines extract kinetic energy from moving water to generate renewable electricity, thus contributing to sustainable energy production and reducing reliance on fossil fuels. It has been hypothesized that a duct can accelerate and condition the fluid flow passing the turbine blades, improving the overall energy extraction efficiency. However, no substantial evidence has been provided so far for hydrokinetic turbines. To investigate this problem, we perform a CFD-based optimization study with a blade-resolved Reynolds-averaged Navier-Stokes (RANS) solver to explore the design of a ducted hydrokinetic turbine that maximizes the efficiency of energy extraction. A gradient-based optimization approach is utilized to effectively deal with the high-dimensional design space of the blade and duct geometry, with gradients being calculated through the adjoint method. The final design is re-evaluated through higher-fidelity unsteady RANS (URANS) simulations. Our optimized ducted turbine achieves an efficiency of about 54% over a range of operating conditions, higher than the typical 46% efficiency of unducted turbines.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:13

Enthalten in:

Scientific reports - 13(2023), 1 vom: 20. Okt., Seite 17968

Sprache:

Englisch

Beteiligte Personen:

Park, Jeongbin [VerfasserIn]
Knight, Bradford G [VerfasserIn]
Liao, Yingqian [VerfasserIn]
Mangano, Marco [VerfasserIn]
Pacini, Bernardo [VerfasserIn]
Maki, Kevin J [VerfasserIn]
Martins, Joaquim R R A [VerfasserIn]
Sun, Jing [VerfasserIn]
Pan, Yulin [VerfasserIn]

Links:

Volltext

Themen:

Journal Article

Anmerkungen:

Date Revised 20.11.2023

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1038/s41598-023-43724-4

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM363563997