Pickering Emulsions and Viscoelastic Solutions Constructed by a Rosin-Based CO2-Responsive Surfactant

Designing stimulus-switch viscoelastic solutions and Pickering emulsions with reversible CO2-responsive behavior remains a challenge. A rosin-based CO2-responsive surfactant, N-cetyl-maleimidepimaric acid N,N-dimethylenediamide (C16MPAN), was synthesized and used to prepare CO2-triggered viscoelastic solutions and Pickering emulsions. This surfactant exhibited excellent CO2-responsive performance in water and formed a viscoelastic solution. This viscoelastic system was investigated by dynamic light scattering (DLS), rheology, and cryogenic transmission electron microscopy (Cory-TEM). The shear viscosity of the system increased by 3-4 orders of magnitude after bubbling with CO2 and a large number of elongated, flexible, tubular wormlike micelles were observed. Further, Pickering emulsions were prepared by C16MPAN+ synergistically with cellulose nanocrystals (CNCs), whose stability and switchability were investigated via adsorption isotherm, droplet size, contact angle, and macroscopic photographs. C16MPAN+ was adsorbed with CNCs to form mechanical barriers at the oil-water interface, making the emulsion stable for at least three months, and desorption from CNCs enabled emulsion breaking. The cycle could be switched reversibly multiple times and the particle size distribution of emulsion was basically the same. This work enriches the application of biomass resources in intelligent responsive materials.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:39

Enthalten in:

Langmuir : the ACS journal of surfaces and colloids - 39(2023), 44 vom: 07. Nov., Seite 15653-15664

Sprache:

Englisch

Beteiligte Personen:

Wang, Hanwen [VerfasserIn]
Zhang, Hangyuan [VerfasserIn]
Wu, Qian [VerfasserIn]
Zhang, Boyi [VerfasserIn]
Zhang, Zehua [VerfasserIn]
Rao, Xiaoping [VerfasserIn]

Links:

Volltext

Themen:

Journal Article

Anmerkungen:

Date Revised 07.11.2023

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1021/acs.langmuir.3c02085

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM363487263