Finite Element Analysis of Fracture Resistance of Mandibular Molars with Different Access Cavity Designs

Copyright © 2023 American Association of Endodontists. Published by Elsevier Inc. All rights reserved..

INTRODUCTION: This study aimed to assess the fracture resistance of mandibular first molars after preparation with 3 different access cavity designs and 2 rotary systems using finite element analysis.

METHODS: Six 3-dimensionally printed mandibular first molars simulating natural teeth received traditional, conservative, and ultraconservative (truss) access cavity preparations. The root canals in each group were instrumented with either XP-Endo Shaper (FKG Dentaire, La Chaux-de-Fonds, Switzerland) or TruNatomy (Dentsply Sirona, Ballaigues, Switzerland) rotary files. The models were individually digitized, and micro-computed tomographic scans were transferred to Mimics software (Materialise NV, Leuven, Belgium) to create a geometric model of the tooth. The designed model was exported to 3-matic software (Materialise NV), and STL files were transferred to Geomagic Design X (3D Systems, Rock Hill, SC). Point cloud data were used for surfacing and transferred to ANSYS software (Ansys, Canonsburg, PA). A 200-N superficial force was applied vertically to the buccal cusps and central fossa, and the maximum and minimum equivalent von Mises stress values were calculated and reported.

RESULTS: The traditional and ultraconservative access cavity designs yielded the highest and the lowest von Mises stress values, respectively. In the ultraconservative cavity design, the stress values in pericervical dentin were lower in canal preparation with TruNatomy compared with XP-Endo Shaper. In the traditional and conservative cavity designs, stress was lower in the first 2 mm from the cementoenamel junction in the XP-Endo Shaper group and in the next 3 mm in the TruNatomy group.

CONCLUSIONS: Stress was lower in the ultraconservative and conservative cavity designs compared with the traditional design. Also, root canal preparation with TruNatomy yielded lower stress values in general compared with XP-Endo Shaper.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:49

Enthalten in:

Journal of endodontics - 49(2023), 12 vom: 05. Dez., Seite 1690-1697

Sprache:

Englisch

Beteiligte Personen:

Rahmatian, Mohammadreza [VerfasserIn]
Jafari, Zahra [VerfasserIn]
Moghaddam, Kiumars Nazari [VerfasserIn]
Dianat, Omid [VerfasserIn]
Kazemi, Ali [VerfasserIn]

Links:

Volltext

Themen:

Conservative access cavity
Finite element analysis
Fracture resistance
Journal Article
Maximum von Mises stress

Anmerkungen:

Date Completed 24.11.2023

Date Revised 24.11.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.joen.2023.09.014

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM362985367