Isolation, antibacterial characterization, and alternating tangential flow-based preparation of viable cells of Lacticaseibacillus paracasei XLK 401 : Potential application in milk preservation

The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)..

It is desirable to obtain high levels of viable Lacticaseibacillus paracasei, a widely used food probiotic whose antibacterial activity and potential application in milk remain largely uninvestigated. Here, we isolated and purified the L. paracasei strain XLK 401 from food-grade blueberry ferments and found that it exhibited strong antibacterial activity against both gram-positive and gram-negative foodborne pathogens, including Staphylococcus aureus, Salmonella paratyphi B, Escherichia coli O157, and Shigella flexneri. Then, we applied alternating tangential flow (ATF) technology to produce viable L. paracasei XLK 401 cells and its cell-free supernatant (CFS). Compared with the conventional fed-batch method, 22 h of ATF-based processing markedly increased the number of viable cells of L. paracasei XLK 401 to 12.14 ± 0.13 log cfu/mL. Additionally, the CFS exhibited good thermal stability and pH tolerance, inhibiting biofilm formation in the abovementioned foodborne pathogens. According to liquid chromatography-mass spectrometry analysis, organic acids were the main antibacterial components of XLK 401 CFS, accounting for its inhibition activity. Moreover, the CFS of L. paracasei XLK 401 effectively inhibited the growth of multidrug-resistant gram-positive Staph. aureus and gram-negative E. coli O157 pathogens in milk, and caused a reduction in the pathogenic cell counts by 6 to 7 log cfu/mL compared with untreated control, thus considerably maintaining the safety of milk samples. For the first time to our knowledge, ATF-based technology was employed to obtain viable L. paracasei on a large scale, and its CFS could serve as a broad-spectrum biopreservative for potential application against foodborne pathogens in milk products.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:107

Enthalten in:

Journal of dairy science - 107(2024), 3 vom: 01. März, Seite 1355-1369

Sprache:

Englisch

Beteiligte Personen:

Xin, Wei-Gang [VerfasserIn]
Li, Xin-Dong [VerfasserIn]
Zhou, Huan-Yu [VerfasserIn]
Li, Xin [VerfasserIn]
Liu, Wei-Xin [VerfasserIn]
Lin, Lian-Bing [VerfasserIn]
Wang, Feng [VerfasserIn]

Links:

Volltext

Themen:

Alternating tangential flow
Anti-Bacterial Agents
Antibacterial activity
Bacterial biofilm
Journal Article
Lacticaseibacillus paracasei
Staphylococcus aureus

Anmerkungen:

Date Completed 04.03.2024

Date Revised 04.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.3168/jds.2023-23622

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM362729247