Experimental validation of an innovative approach in biokinetics study for personalised dosimetry of molecular radiation therapy treatments

Creative Commons Attribution license..

One of today's main challenges in molecular radiation therapy is to assess an individual dosimetry that allows treatment to be tailored to the specific patient, in accordance with the current paradigm of 'personalized medicine'. The evaluation of the absorbed doses for tumor and organs at risk in molecular radiotherapy is typically based on MIRD schema acquiring few experimental points for the assessement of biokinetic parameters. WIDMApp, the wearable individual dose monitoring apparatus, is an innovative approach for internal dosimetry based on a wearable radiation detecting system for individual biokinetics sampling, a Monte Carlo simulation for particle interaction, and an unfolding algorithm for data analysis and integrated activity determination at organ level. A prototype of a WIDMApp detector element was used to record the photon emissions in a body phantom containing 3 spheres with liquid sources (18F,64Cu and99mTc) to simulate organs having different washout. Modelling the phantom geometry on the basis of a CT scan imaging, the Monte Carlo simulation computed the contribution of each emitting sphere to the signal detected in 3 positions on the phantoms surface. Combining the simulated results with the data acquired for 120 h, the unfolding algorithm deconvolved the detected signal and assessed the decay half-life (T1/2) and initial activity values (A(0)) that best reproduces the observed exponential decays. A 3%-18% level of agreement is found between the actualA(0) andT1/2values and those obtained by means of the minimization procedure based on the Monte Carlo simulation. That resulted in an estimation of the cumulated activity <15%. Moreover, WIDMApp data redundancy has been used to mitigate some experimental occurrences that happened during data taking. A first experimental test of the WIDMApp approach to internal radiation dosimetry is presented. Studies with patients are foreseen to validate the technique in a real environment.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:68

Enthalten in:

Physics in medicine and biology - 68(2023), 19 vom: 25. Sept.

Sprache:

Englisch

Beteiligte Personen:

Mancini-Terracciano, C [VerfasserIn]
Ambrosino, A [VerfasserIn]
Campana, L [VerfasserIn]
Cassano, B [VerfasserIn]
Collamati, F [VerfasserIn]
Faccini, R [VerfasserIn]
Iaccarino, G [VerfasserIn]
Mirabelli, R [VerfasserIn]
Morganti, S [VerfasserIn]
Nicolanti, F [VerfasserIn]
Pacilio, M [VerfasserIn]
Soriani, A [VerfasserIn]
Solfaroli Camillocci, E [VerfasserIn]

Links:

Volltext

Themen:

In vivo dosimetry
Individualized treatment planning
Journal Article
Molecular radiotherapy
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 23.10.2023

Date Revised 28.10.2023

published: Electronic

Citation Status MEDLINE

doi:

10.1088/1361-6560/acf910

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM36243526X