Realizing avalanche criticality in neuromorphic networks on a 2D hBN platform

Networks and systems which exhibit brain-like behavior can analyze information from intrinsically noisy and unstructured data with very low power consumption. Such characteristics arise due to the critical nature and complex interconnectivity of the brain and its neuronal network. We demonstrate a system comprising of multilayer hexagonal boron nitride (hBN) films contacted with silver (Ag), which can uniquely host two different self-assembled networks, which are self-organized at criticality (SOC). This system shows bipolar resistive switching between the high resistance state (HRS) and the low resistance state (LRS). In the HRS, Ag clusters (nodes) intercalate in the van der Waals gaps of hBN forming a network of tunnel junctions, whereas the LRS contains a network of Ag filaments. The temporal avalanche dynamics in both these states exhibit power-law scaling, long-range temporal correlation, and SOC. These networks can be tuned from one to another with voltage as a control parameter. For the first time, two different neural networks are realized in a single CMOS compatible, 2D material platform.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:10

Enthalten in:

Materials horizons - 10(2023), 11 vom: 30. Okt., Seite 5235-5245

Sprache:

Englisch

Beteiligte Personen:

Rao, Ankit [VerfasserIn]
Sanjay, Sooraj [VerfasserIn]
Dey, Vivek [VerfasserIn]
Ahmadi, Majid [VerfasserIn]
Yadav, Pramod [VerfasserIn]
Venugopalrao, Anirudh [VerfasserIn]
Bhat, Navakanta [VerfasserIn]
Kooi, Bart [VerfasserIn]
Raghavan, Srinivasan [VerfasserIn]
Nukala, Pavan [VerfasserIn]

Links:

Volltext

Themen:

Journal Article

Anmerkungen:

Date Revised 30.10.2023

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1039/d3mh01000g

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM362367906