Polystyrene micro- and nanoplastics cause placental dysfunction in mice†

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissionsoup.com..

Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 μm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:110

Enthalten in:

Biology of reproduction - 110(2024), 1 vom: 13. Jan., Seite 211-218

Sprache:

Englisch

Beteiligte Personen:

Dibbon, Katherine C [VerfasserIn]
Mercer, Grace V [VerfasserIn]
Maekawa, Alexandre S [VerfasserIn]
Hanrahan, Jenna [VerfasserIn]
Steeves, Katherine L [VerfasserIn]
Ringer, Lauren C M [VerfasserIn]
Simpson, André J [VerfasserIn]
Simpson, Myrna J [VerfasserIn]
Baschat, Ahmet A [VerfasserIn]
Kingdom, John C [VerfasserIn]
Macgowan, Christopher K [VerfasserIn]
Sled, John G [VerfasserIn]
Jobst, Karl J [VerfasserIn]
Cahill, Lindsay S [VerfasserIn]

Links:

Volltext

Themen:

Fetal growth restriction
Journal Article
Microplastics
Mouse
Nanoplastics
Plastics
Polystyrenes
Pregnancy
Ultrasound

Anmerkungen:

Date Completed 17.01.2024

Date Revised 17.01.2024

published: Print

Citation Status MEDLINE

doi:

10.1093/biolre/ioad126

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM362217475