Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir

© 2023. The Author(s), under exclusive licence to Springer Nature Limited..

Nirmatrelvir is a specific antiviral drug that targets the main protease (Mpro) of SARS-CoV-2 and has been approved to treat COVID-191,2. As an RNA virus characterized by high mutation rates, whether SARS-CoV-2 will develop resistance to nirmatrelvir is a question of concern. Our previous studies have shown that several mutational pathways confer resistance to nirmatrelvir, but some result in a loss of viral replicative fitness, which is then compensated for by additional alterations3. The molecular mechanisms for this observed resistance are unknown. Here we combined biochemical and structural methods to demonstrate that alterations at the substrate-binding pocket of Mpro can allow SARS-CoV-2 to develop resistance to nirmatrelvir in two distinct ways. Comprehensive studies of the structures of 14 Mpro mutants in complex with drugs or substrate revealed that alterations at the S1 and S4 subsites substantially decreased the level of inhibitor binding, whereas alterations at the S2 and S4' subsites unexpectedly increased protease activity. Both mechanisms contributed to nirmatrelvir resistance, with the latter compensating for the loss in enzymatic activity of the former, which in turn accounted for the restoration of viral replicative fitness, as observed previously3. Such a profile was also observed for ensitrelvir, another clinically relevant Mpro inhibitor. These results shed light on the mechanisms by which SARS-CoV-2 evolves to develop resistance to the current generation of protease inhibitors and provide the basis for the design of next-generation Mpro inhibitors.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:622

Enthalten in:

Nature - 622(2023), 7982 vom: 11. Okt., Seite 376-382

Sprache:

Englisch

Beteiligte Personen:

Duan, Yinkai [VerfasserIn]
Zhou, Hao [VerfasserIn]
Liu, Xiang [VerfasserIn]
Iketani, Sho [VerfasserIn]
Lin, Mengmeng [VerfasserIn]
Zhang, Xiaoyu [VerfasserIn]
Bian, Qucheng [VerfasserIn]
Wang, Haofeng [VerfasserIn]
Sun, Haoran [VerfasserIn]
Hong, Seo Jung [VerfasserIn]
Culbertson, Bruce [VerfasserIn]
Mohri, Hiroshi [VerfasserIn]
Luck, Maria I [VerfasserIn]
Zhu, Yan [VerfasserIn]
Liu, Xiaoce [VerfasserIn]
Lu, Yuchi [VerfasserIn]
Yang, Xiuna [VerfasserIn]
Yang, Kailin [VerfasserIn]
Sabo, Yosef [VerfasserIn]
Chavez, Alejandro [VerfasserIn]
Goff, Stephen P [VerfasserIn]
Rao, Zihe [VerfasserIn]
Ho, David D [VerfasserIn]
Yang, Haitao [VerfasserIn]

Links:

Volltext

Themen:

3C-like protease, SARS coronavirus
7R9A5P7H32
9DLQ4CIU6V
Antiviral Agents
Coronavirus 3C Proteases
EC 3.4.22.-
EC 3.4.22.28
Ensitrelvir
GMW67QNF9C
Journal Article
Lactams
Leucine
Nirmatrelvir
Nitriles
PX665RAA3H
Proline

Anmerkungen:

Date Completed 26.10.2023

Date Revised 26.10.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1038/s41586-023-06609-0

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM361937202