MOF-Derived Nitrogen-Doped Porous Carbon Polyhedrons/Carbon Nanotubes Nanocomposite for High-Performance Lithium-Sulfur Batteries

Nanocomposites that combine porous materials and a continuous conductive skeleton as a sulfur host can improve the performance of lithium-sulfur (Li-S) batteries. Herein, carbon nanotubes (CNTs) anchoring small-size (~40 nm) N-doped porous carbon polyhedrons (S-NCPs/CNTs) are designed and synthesized via annealing the precursor of zeolitic imidazolate framework-8 grown in situ on CNTs (ZIF-8/CNTs). In the nanocomposite, the S-NCPs serve as an efficient host for immobilizing polysulfides through physical adsorption and chemical bonding, while the interleaved CNT networks offer an efficient charge transport environment. Moreover, the S-NCP/CNT composite with great features of a large specific surface area, high pore volume, and short electronic/ion diffusion depth not only demonstrates a high trapping capacity for soluble lithium polysulfides but also offers an efficient charge/mass transport environment, and an effective buffering of volume changes during charge and discharge. As a result, the Li-S batteries based on a S/S-NCP/CNT cathode deliver a high initial capacity of 1213.8 mAh g-1 at a current rate of 0.2 C and a substantial capacity of 1114.2 mAh g-1 after 100 cycles, corresponding to a high-capacity retention of 91.7%. This approach provides a practical research direction for the design of MOF-derived carbon materials in the application of high-performance Li-S batteries.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:13

Enthalten in:

Nanomaterials (Basel, Switzerland) - 13(2023), 17 vom: 25. Aug.

Sprache:

Englisch

Beteiligte Personen:

Chen, Jun [VerfasserIn]
Yang, Yuanjiang [VerfasserIn]
Yu, Sheng [VerfasserIn]
Zhang, Yi [VerfasserIn]
Hou, Jiwei [VerfasserIn]
Yu, Nengfei [VerfasserIn]
Fang, Baizeng [VerfasserIn]

Links:

Volltext

Themen:

Carbon nanotubes
Chemical immobilization
Journal Article
Lithium–sulfur batteries
Metal–organic framework
Shuttling effect

Anmerkungen:

Date Revised 11.09.2023

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.3390/nano13172416

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM361844158