Ameliorative Effects of Zinc Oxide, in Either Conventional or Nanoformulation, Against Bisphenol A Toxicity on Reproductive Performance, Oxidative Status, Gene Expression and Histopathology in Adult Male Rats

© 2023. The Author(s)..

Bisphenol A (BPA) is a widely used endocrine disruptor that represents a significant risk to male reproductive function. Zinc (Zn) is vital for appropriate development of testes and to guarantee optimal testicular function and spermatogenesis. Our goal was to investigate if zinc oxide (ZnO), either in conventional or nanoformulation, could safeguard adult male rats' reproductive performance against the damaging effects of BPA. Signaling expression of CYP11A1 and Nrf-2 in the testis, testicular oxidant-antioxidant status, Bax/Bcl-2 apoptotic ratio, and histological examination of various reproductive organs were all evaluated. Twenty-eight adult male albino rats were divided randomly into 4 groups (7 animals each) including the control, BPA, conventional zinc oxide (cZnO) + BPA, and zinc oxide nanoparticles (ZnO-NPs) + BPA groups. The study was extended for 2 successive months. Our findings revealed strong negative effects of BPA on sperm cell characteristics such as sperm motility, viability, concentration and abnormalities. Additionally, BPA reduced serum levels of testosterone, triiodothyronine (T3), and thyroxine (T4). Also, it evoked marked oxidative stress in the testes; elevating malondialdehyde (MDA) and reducing total antioxidant capacity (TAC). BPA significantly downregulated testicular mRNA relative expression levels of CYP11A1 and Nrf-2, compared to control. Testicular apoptosis was also prompted by increasing Bax/ Bcl-2 ratio in testicular tissue. Histopathological findings in the testes, epididymis, prostate gland, and seminal vesicle confirmed the detrimental effects of BPA. Interestingly, cZnO and ZnO-NPs significantly alleviated all negative effects of BPA, but ZnO-NPs performed better. In conclusion, our findings point to ZnO, specifically ZnO-NPs, as a viable treatment for BPA-induced testicular dysfunction.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:202

Enthalten in:

Biological trace element research - 202(2024), 5 vom: 28. März, Seite 2143-2157

Sprache:

Englisch

Beteiligte Personen:

El-Kossi, Dina M M H [VerfasserIn]
Ibrahim, Shawky S [VerfasserIn]
Hassanin, Kamel M A [VerfasserIn]
Hamad, Nashwa [VerfasserIn]
Rashed, Noha A [VerfasserIn]
Abdel-Wahab, Ahmed [VerfasserIn]

Links:

Volltext

Themen:

Antioxidants
Bcl-2-Associated X Protein
Benzhydryl Compounds
Bisphenol A
Cholesterol Side-Chain Cleavage Enzyme
EC 1.14.15.6
Journal Article
MLT3645I99
Phenols
SOI2LOH54Z
Testicular apoptosis
Zinc
Zinc Oxide
Zinc oxide nanoparticles

Anmerkungen:

Date Completed 21.03.2024

Date Revised 23.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1007/s12011-023-03830-w

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM361799276