Activatable Type I Photosensitizer with Quenched Photosensitization Pre and Post Photodynamic Therapy

© 2023 Wiley-VCH GmbH..

The phototoxicity of photosensitizers (PSs) pre and post photodynamic therapy (PDT), and the hypoxic tumor microenvironment are two major problems limiting the application of PDT. While activatable PSs can successfully address the PS phototoxicity pre PDT, and type I PS can generate reactive oxygen species (ROS) effectively in hypoxic environment, very limited approaches are available for addressing the phototoxicity post PDT. There is virtually no solution available to address all these issues using a single design. Herein, we propose a proof-of-concept on-demand switchable photosensitizer with quenched photosensitization pre and post PDT, which could be activated only in tumor hypoxic environment. Particularly, a hypoxia-normoxia cycling responsive type I PS TPFN-AzoCF3 was designed to demonstrate the concept, which was further formulated into TPFN-AzoCF3 nanoparticles (NPs) using DSPE-PEG-2000 as the encapsulation matrix. The NPs could be activated only in hypoxic tumors to generate type I ROS during PDT treatment, but remain non-toxic in normal tissues, pre or after PDT, thus minimizing side effects and improving the therapeutic effect. With promising results in in vitro and in vivo tumor treatment, this presented strategy will pave the way for the design of more on-demand switchable photosensitizers with minimized side effects in the future.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:62

Enthalten in:

Angewandte Chemie (International ed. in English) - 62(2023), 46 vom: 13. Nov., Seite e202307288

Sprache:

Englisch

Beteiligte Personen:

Tian, Jianwu [VerfasserIn]
Li, Bowen [VerfasserIn]
Zhang, Fu [VerfasserIn]
Yao, Zhuo [VerfasserIn]
Song, Wentao [VerfasserIn]
Tang, Yufu [VerfasserIn]
Ping, Yuan [VerfasserIn]
Liu, Bin [VerfasserIn]

Links:

Volltext

Themen:

Hypoxia
Journal Article
On-Demand Switchable Photosensitizer
Photodynamic Therapy
Photosensitizing Agents
Reactive Oxygen Species
Research Support, Non-U.S. Gov't
Reversible
Type I Photosensitizer

Anmerkungen:

Date Completed 08.11.2023

Date Revised 09.11.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1002/anie.202307288

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM361794746