The Power of Molecular Dynamics Simulations and Their Applications to Discover Cysteine Protease Inhibitors

Copyright© Bentham Science Publishers; For any queries, please email at epubbenthamscience.net..

A large family of enzymes with the function of hydrolyzing peptide bonds, called peptidases or cysteine proteases (CPs), are divided into three categories according to the peptide chain involved. CPs catalyze the hydrolysis of amide, ester, thiol ester, and thioester peptide bonds. They can be divided into several groups, such as papain-like (CA), viral chymotrypsin-like CPs (CB), papain-like endopeptidases of RNA viruses (CC), legumain-type caspases (CD), and showing active residues of His, Glu/Asp, Gln, Cys (CE). The catalytic mechanism of CPs is the essential cysteine residue present in the active site. These mechanisms are often studied through computational methods that provide new information about the catalytic mechanism and identify inhibitors. The role of computational methods during drug design and development stages is increasing. Methods in Computer-Aided Drug Design (CADD) accelerate the discovery process, increase the chances of selecting more promising molecules for experimental studies, and can identify critical mechanisms involved in the pathophysiology and molecular pathways of action. Molecular dynamics (MD) simulations are essential in any drug discovery program due to their high capacity for simulating a physiological environment capable of unveiling significant inhibition mechanisms of new compounds against target proteins, especially CPs. Here, a brief approach will be shown on MD simulations and how the studies were applied to identify inhibitors or critical information against cysteine protease from several microorganisms, such as Trypanosoma cruzi (cruzain), Trypanosoma brucei (rhodesain), Plasmodium spp. (falcipain), and SARS-CoV-2 (Mpro). We hope the readers will gain new insights and use our study as a guide for potential compound identifications using MD simulations.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - year:2023

Enthalten in:

Mini reviews in medicinal chemistry - (2023) vom: 01. Sept.

Sprache:

Englisch

Beteiligte Personen:

Dos Santos Nascimento, Igor José [VerfasserIn]
Santana Gomes, Joilly Nilce [VerfasserIn]
de Oliveira Viana, Jéssika [VerfasserIn]
de Medeiros E Silva, Yvnni Maria Sales [VerfasserIn]
Barbosa, Euzébio Guimarães [VerfasserIn]
de Moura, Ricardo Olimpio [VerfasserIn]

Links:

Volltext

Themen:

Computational Chemistry
Computer-Aided Drug Design
Cysteine Protease
Journal Article
Molecular Mechanics
Molecular Modeling
Neglected Tropical Diseases

Anmerkungen:

Date Revised 08.09.2023

published: Print-Electronic

Citation Status Publisher

doi:

10.2174/1389557523666230901152257

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM361777248