Changes in oxygen delivery during experimental models of cerebral malaria

Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved..

Cerebral malaria (CM) is a severe manifestation of malaria that commonly occurs in children and is hallmarked by neurologic symptoms and significant Plasmodium falciparum parasitemia. It is currently hypothesized that cerebral hypoperfusion from impaired microvascular oxygen transport secondary to parasitic occlusion of the microvasculature is responsible for cerebral ischemia and thus disease severity. Animal models to study CM, are known as experimental cerebral malaria (ECM), and include the C57BL/6J infected with Plasmodium berghei ANKA (PbA), which is ECM-susceptible, and BALB/c infected with PbA, which is ECM-resistant. Here we sought to investigate whether changes in oxygen (O2) delivery, O2 flux, and O2 utilization are altered in both these models of ECM using phosphorescence quenching microscopy (PQM) and direct measurement of microvascular hemodynamics using the cranial window preparation. Animal groups used for investigation consisted of ECM-susceptible C57BL/6 (Infected, n = 14) and ECM-resistant BALB/c (Infected, n = 9) mice. Uninfected C57BL/6 (n = 6) and BALB/c (n = 6) mice were included as uninfected controls. Control animals were manipulated in the exact same way as the infected mice (except for the infection itself). C57BL/6 ECM animals at day 6 of infection were divided into two cohorts: Early-stage ECM, presenting mild to moderate drops in body temperature (>34 < 36 °C) and Late-stage ECM, showing marked drops in body temperature (<33 °C). Data taken from new experiments conducted with these animal models were analyzed using a general linear mixed model. We constructed three general linear mixed models, one for total O2 content, another for total O2 delivery, and the third for total O2 content as a function of convective flow. We found that in both the ECM-susceptible C57BL/6J model and ECM-resistant BALB/c model of CM, convective and diffusive O2 flux along with pial hemodynamics are impaired. We further show that concomitant changes in p50 (oxygen partial pressure for 50% hemoglobin saturation), only 5 mmHg in the case of late-stage CM C57BL/6J mice, and O2 diffusion result in insufficient O2 transport by the pial microcirculation, and that both these changes are required for late-stage disease. In summary, we found impaired O2 transport and O2 affinity in late-stage ECM, but only the former in either early-stage ECM and ECM-resistant strains.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:254

Enthalten in:

Experimental parasitology - 254(2023) vom: 15. Nov., Seite 108608

Sprache:

Englisch

Beteiligte Personen:

Jani, Vinay P [VerfasserIn]
Williams, Alexander T [VerfasserIn]
Carvalho, Leonardo [VerfasserIn]
Cabrales, Pedro [VerfasserIn]

Links:

Volltext

Themen:

Cerebral malaria
Hemodynamics
Journal Article
Microcirculation
Oxygen affinity
Phosphorescence quenching microscopy

Anmerkungen:

Date Revised 20.10.2023

published: Print-Electronic

Citation Status Publisher

doi:

10.1016/j.exppara.2023.108608

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM361710151