Chrysin loaded bilosomes improve the hepatoprotective effects of chrysin against CCl4 induced hepatotoxicity in mice

In the present work, chrysin loaded bilosomes were formulated, characterized and evaluated to enhance the hepatoprotective activity of drug. Accordingly, chrysin loaded bilosomes were prepared by applying the thin film hydration method; also, fractional factorial design was used to optimize the production conditions of nanoformulations. The prepared formulations were subjected to different methods of characterization; then the hepatoprotective activity of the optimized one was evaluated in the CCl4 hepatointoxicated mice model. Optimized chrysin loaded bilosomes showed a spherical shape with a particle size of 232.97 ± 23 nm, the polydispersity index of 0.35 ± 0.01, the zeta potential of -44.5 ± 1.27 mv, the entrapment efficiency of 96.77 ± 0.18%, the drug loading % of 6.46 ± 0.01 and the release efficiency of 42.25 ± 1.04 during 48 h. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging assay demonstrated the superiority of the anti-oxidant potential of chrysin loaded bilosomes, as compared to pure chrysin. This was in agreement with histopathological investigations, showing significant improvement in serum hepatic biomarkers of CCl4 intoxicated mice treated with chrysin loaded bilosomes, as compared with free chrysin. These results, thus, showed the potential use of bilosomes to enhance the hepatoprotective activity of chrysin via oral administration.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:38

Enthalten in:

Journal of biomaterials applications - 38(2023), 4 vom: 25. Okt., Seite 509-526

Sprache:

Englisch

Beteiligte Personen:

Naseri, Atefeh [VerfasserIn]
Taymouri, Somayeh [VerfasserIn]
Hosseini Sharifabadi, Ali [VerfasserIn]
Varshosaz, Jaleh [VerfasserIn]

Links:

Volltext

Themen:

3CN01F5ZJ5
Anti-oxidant potential
Antioxidants
Bilosomes
Chrysin
Flavonoids
Hepatoprotective activity
Journal Article
Liposomes
Thin film hydration technique

Anmerkungen:

Date Completed 15.11.2023

Date Revised 29.11.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1177/08853282231198948

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM361303440