Effect of global warming on the potential distribution of a holoparasitic plant (Phelypaea tournefortii) : both climate and host distribution matter

© 2023. The Author(s)..

Phelypaea tournefortii (Orobanchaceae) primarily occurs in the Caucasus (Armenia, Azerbaijan, Georgia, and N Iran) and Turkey. This perennial, holoparasitic herb is achlorophyllous and possesses one of the most intense red flowers among all plants worldwide. It occurs as a parasite on the roots of several Tanacetum (Asteraceae) species and prefers steppe and semi-arid habitats. Climate change may affect holoparasites both directly through effects on their physiology and indirectly as a consequence of its effects on their host plants and habitats. In this study, we used the ecological niche modeling approach to estimate the possible effects of climate change on P. tournefortii and to evaluate the effect of its parasitic relationships with two preferred host species on the chances of survival of this species under global warming. We used four climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) and three different simulations (CNRM, GISS-E2, INM). We modeled the species' current and future distribution using the maximum entropy method implemented in MaxEnt using seven bioclimatic variables and species occurrence records (Phelypaea tournefortii - 63 records, Tanacetum argyrophyllum - 40, Tanacetum chiliophyllum - 21). According to our analyses, P. tournefortii will likely contract its geographical range remarkably. In response to global warming, the coverage of the species' suitable niches will decrease by at least 34%, especially in central and southern Armenia, Nakhchivan in Azerbaijan, northern Iran, and NE Turkey. In the worst-case scenario, the species will go completely extinct. Additionally, the studied plant's hosts will lose at least 36% of currently suitable niches boosting the range contraction of P. tournefortii. The GISS-E2 scenario will be least damaging, while the CNRM will be most damaging to climate change for studied species. Our study shows the importance of including ecological data in niche models to obtain more reliable predictions of the future distribution of parasitic plants.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:13

Enthalten in:

Scientific reports - 13(2023), 1 vom: 03. Juli, Seite 10741

Sprache:

Englisch

Beteiligte Personen:

Piwowarczyk, Renata [VerfasserIn]
Kolanowska, Marta [VerfasserIn]

Links:

Volltext

Themen:

Journal Article
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 05.07.2023

Date Revised 06.07.2023

published: Electronic

Citation Status MEDLINE

doi:

10.1038/s41598-023-37897-1

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM359017517